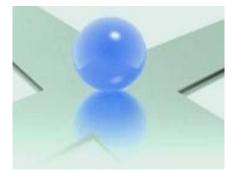
Why Risk Analysis is Difficult


and

Some Thoughts on How to Proceed

Yakov Ben-Haim

Technion

Israel Institute of Technology

 $^0 lectures \talks \lib \risk-anal-dif01.tex 8.4.2012$

Contents

1	Highlights (risk-anal-dif01.tex)	3
Ι	Why Risk Analysis is Difficult	16
2	A Bit of History (bit-hist01.tex)	17
3	Shackle-Popper Indeterminism3.1Shackle-Popper Indeterminism(indif5d-shackle-pop02.tex)	30 31
4	Hume and the Problem of Induction (hume-induc01.tex)	40
II	Some Thoughts on How to Proceed	64
5	Epistemic Paralysis (epistem-paral01.tex)	65
6	Models and Robustness (models-rbs01.tex)	71
7	Innovation Dilemma (innov-dilem01.tex)	90
8	Max-Min and Robust-Satisficing (maxmin-rs03shrt.tex)	107
9	Opportuneness (opportuneness01.tex)	120
10	Conclusion (risk-anal-dif01.tex)	131

1 *Highlights*

Risk Analysis?

§ Article titles from *Risk Analysis:*

- Pesticides and Methylmercury in the United Arab Emirates.

•

§ Article titles from *Risk Analysis:*

- Pesticides and Methylmercury in the United Arab Emirates.
- Equation Reliability of Soil Ingestion Estimates in Mass-Balance Soil Ingestion

§ Article titles from *Risk Analysis:*

- Pesticides and Methylmercury in the United Arab Emirates.
- Equation Reliability of Soil Ingestion Estimates in Mass-Balance Soil Ingestion
- An Overview of Maritime Waterway Quantitative Risk Assessment Models

§ Article titles from Risk Analysis:

- Pesticides and Methylmercury in the United Arab Emirates.
- Equation Reliability of Soil Ingestion Estimates in Mass-Balance Soil Ingestion
- An Overview of Maritime Waterway Quantitative Risk Assessment Models

§ Goals of risk analysis:

- Improve safety.
- Identify causes of injury.
- Support decision making.

- Models of the process.

- Models of the process.
- Performance requirements or failure criteria.
- •

- Models of the process.
- Performance requirements or failure criteria.
- Models of uncertainty.

- Models of the process.
- Performance requirements or failure criteria.
- Models of uncertainty.
- § Why is risk analysis hard?
 - Complex variable processes.
 - •

- Models of the process.
- Performance requirements or failure criteria.
- Models of uncertainty.
- § Why is risk analysis hard?
 - Complex variable processes.
 - Conflicting requirements.

•

- Models of the process.
- Performance requirements or failure criteria.
- Models of uncertainty.

§ Why is risk analysis hard?

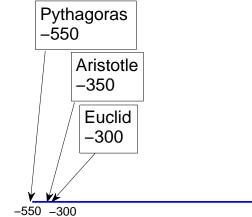
- Complex variable processes.
- Conflicting requirements.
- Lots of uncertainty.

- Models of the process.
- Performance requirements or failure criteria.
- Models of uncertainty.
- § Why is risk analysis hard?
 - Complex variable processes.
 - Conflicting requirements.
 - Lots of uncertainty.
- § Other difficulties:
 - Psychology.
 - Social and cultural issues.
 - Institutions.

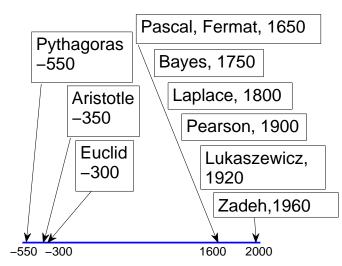
Part I

Why Risk Analysis is Difficult

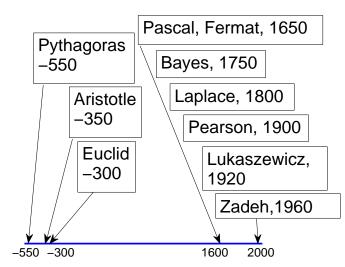
2 A Bit of History

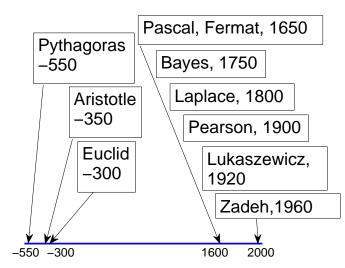

 $^{^{0}}_{\text{lectures}talks} = 8.4.2012$

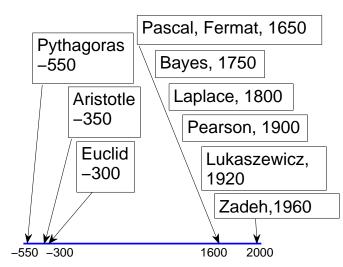
- Cerebral cortex: many 10,000s of years.
- lacksquare

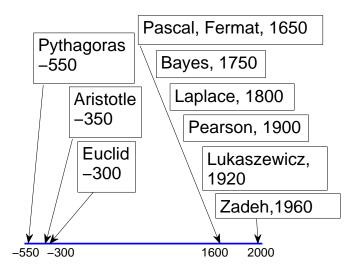

- Cerebral cortex: many 10,000s of years.
- Agriculture and settlement: 7-8,000 years.
- •

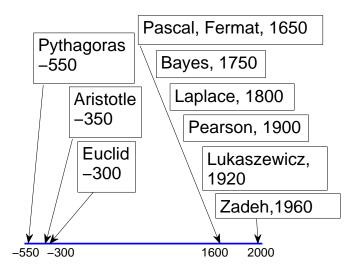
- Cerebral cortex: many 10,000s of years.
- Agriculture and settlement: 7-8,000 years.
- Writing: 5,000 years.

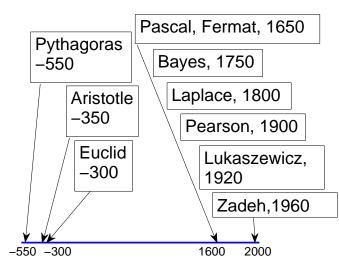

- Cerebral cortex: many 10,000s of years.
- Agriculture and settlement: 7-8,000 years.
- Writing: 5,000 years.
- Science:
 - Ancient Greeks had some: 2,000 years.
 - Mostly modern Europe: 500 years.


§ Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.


- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - •


- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - ullet


- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - 3-valued logic (Lukaczewicz, 1917).
 - •


- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - 3-valued logic (Lukaczewicz, 1917).
 - Fuzzy logic (Zadeh, 1965).
 - •

- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - 3-valued logic (Lukaczewicz, 1917).
 - Fuzzy logic (Zadeh, 1965).
 - Min-max (Wald, 1945).
 - •

- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - 3-valued logic (Lukaczewicz, 1917).
 - Fuzzy logic (Zadeh, 1965).
 - Min-max (Wald, 1945).
 - P-boxes. Lower pre-visions.
 - Dempster-Shafer. GIT.
 - Info-gap theory.

- § Ancient Greeks: Thinking about thinking. Deduction, logic, axiomatization.
- § Moderns: Thinking about uncertainty.
 - Probability: Pascal, Fermat,
 - Statistics: Induction, inference. Bayesian, Neyman-Pearson,
 - 3-valued logic (Lukaczewicz, 1917).
 - Fuzzy logic (Zadeh, 1965).
 - Min-max (Wald, 1945).
 - P-boxes. Lower pre-visions.
 - Dempster-Shafer. GIT.
 - Info-gap theory.
- § We're just beginning to understand uncertainty.

3 Shackle-Popper Indeterminism

3.1 Shackle-Popper Indeterminism

 $⁰_{\text{lectures}_{\text{talks}}_{\text{lib}_{\text{indif5d-shackle-pop02.tex}}} 5.4.2012}$

What people know, influences how they behave.

What people know,

influences how they behave.

§ Discovery:

What will be discovered tomorrow cannot be known today.

What people know,

influences how they behave.

§ Discovery:

What will be discovered tomorrow

cannot be known today.

§ Indeterminism:

Tomorrow's behavior cannot be modelled completely today.

What people know,

influences how they behave.

§ Discovery:

What will be discovered tomorrow cannot be known today.

§ Indeterminism:

Tomorrow's behavior cannot be modelled completely today.

§ Information-gaps, indeterminisms,

sometimes

cannot be modelled probabilistically.

§ Ignorance is not probabilistic.

§ Two types of discoveries:

- Discover what does exist (recovery).
 - America.
 - HIV virus.
 - House keys.
- •

§ Two types of discoveries:

- Discover what does exist (recovery).
 - America.
 - HIV virus.
 - House keys.
- Discover what does not exist (invention).
 - \circ Mathematical theorem (Hardy disagreed).
 - Idea of freedom.
 - Beethoven's 5th symphony.

§ Two types of discoveries:

- Discover what does exist (recovery).
 - America.
 - HIV virus.
 - House keys.
- Discover what does not exist (invention).
 - \circ Mathematical theorem (Hardy disagreed).
 - \circ Idea of freedom.
 - Beethoven's 5th symphony.
- § Two corresponding types of universe:
 - Discover what does exist. Closed universe. Creation ended.
 - •

§ Two types of discoveries:

- Discover what does exist (recovery).
 - America.
 - HIV virus.
 - House keys.
- Discover what does not exist (invention).
 - Mathematical theorem (Hardy disagreed).
 - \circ Idea of freedom.
 - \circ Beethoven's 5th symphony.
- § Two corresponding types of universe:
 - Discover what does exist. Closed universe. Creation ended.
 - Discover what does not exist.
 - **Open universe.** Creation continues.

4 Hume and the Problem of Induction

 $⁰_{\text{lectures}_{k} \in \mathbb{N}}$ 8.4.2012

• Use evidence to make new conclusion, generalization, prediction.

- Use evidence to make new conclusion, generalization, prediction.
- § Hume's problem (prelim summary):
 - Induction cannot prove validity of induction.
 - ullet

- Use evidence to make new conclusion, generalization, prediction.
- § Hume's problem (prelim smry):
 - Induction cannot prove validity of induction.
 - Knowledge, including science, based on induction.

- Use evidence to make new conclusion, generalization, prediction.
- § Hume's problem (prelim smry):
 - Induction cannot prove validity of induction.
 - Knowledge, including science, based on induction.
 - How to justify knowledge?

• "[W]e cannot give a satisfactory reason why we believe, after a thousand experiments, that a stone will fall or fire burn".¹

•

¹Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier Books, 1962, p.160.

• "[W]e cannot give a satisfactory reason why we believe, after a thousand experiments, that a stone will fall or fire burn".²

• "For all inferences from experience suppose, as their foundation, that the future will resemble the past and that similar powers will be conjoined with similar sensible qualities. ...

•

²Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier Books, 1962, p.160.

• "[W]e cannot give a satisfactory reason why we believe, after a thousand experiments, that a stone will fall or fire burn".³

• "For all inferences from experience suppose, as their foundation, that the future will resemble the past and that similar powers will be conjoined with similar sensible qualities. ...

• "It is impossible, therefore, that any arguments from experience can prove this resemblance of the past to the future, since all these arguments are founded on the supposition of that resemblance."⁴

³Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier Books, 1962, p.160.

⁴Hume, D. An Inquiry Concerning Human Understanding, 1748, p.57.

• "[W]e cannot give a satisfactory reason why we believe, after a thousand experiments, that a stone will fall or fire burn".⁵

• "For all inferences from experience suppose, as their foundation, that the future will resemble the past and that similar powers will be conjoined with similar sensible qualities. ...

• "It is impossible, therefore, that any arguments from experience can prove this resemblance of the past to the future, since all these arguments are founded on the supposition of that resemblance."⁶

§ Hume argues from

logical structure of induction.

⁵Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier Books, 1962, p.160.

⁶Hume, D. An Inquiry Concerning Human Understanding, 1748, p.57.

• "[W]e cannot give a satisfactory reason why we believe, after a thousand experiments, that a stone will fall or fire burn".⁷

• "For all inferences from experience suppose, as their foundation, that the future will resemble the past and that similar powers will be conjoined with similar sensible qualities. ...

• "It is impossible, therefore, that any arguments from experience can prove this resemblance of the past to the future, since all these arguments are founded on the supposition of that resemblance."⁸

§ Hume argues from

logical structure of induction.

§ Hume's justification of induction: habit. Today we'd say: psychology.

⁷Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier Books, 1962, p.160.

⁸Hume, D. An Inquiry Concerning Human Understanding, 1748, p.57.

§ One can also argue from empirical structure of induction.

§ One can also argue from empirical structure of induction.

- § One can never test the future:
 - All tests occur now.
 - All inductions are from **past** evidence.
 - •

§ One can also argue from empirical structure of induction.

- § One can never test the future:
 - All tests occur now.
 - All inductions are from **past** evidence.
 - Rug metaphor:

The future can never be tested, just as one can never step on the rolled up part of an endless rug unfurling always in front of you.⁹

⁹Yakov Ben-Haim, 2011, The end of science? http://decisions-and-info-gaps.blogspot.com/2011/10/end-of-science.html

- Examine many emeralds up to time t.
- All these emeralds were green.
- •

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference:
 - "All emeralds are green."

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue":

"green up to time t and blue thereafter."

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue": "green up to time t and blue thereafter."
- § The evidence supports inductive inference: "All emeralds are grue."

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue": "green up to time t and blue thereafter."
- § The evidence supports inductive inference: "All emeralds are grue."
- § Hume's 2nd problem (Goodman):
 - How to decide between these inductive inferences?
 - Each is equally supported by evidence.

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue": "green up to time t and blue thereafter."
- § The evidence supports inductive inference: "All emeralds are grue."
- § Hume's 2nd problem (Goodman):
 - How to decide between these inductive inferences?
 - Each is equally supported by evidence.
- § Easy (they say): We know stability of color, chemical properties, etc.

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue": "green up to time t and blue thereafter."
- § The evidence supports inductive inference: "All emeralds are grue."
- § Hume's 2nd problem (Goodman):
 - How to decide between these inductive inferences?
 - Each is equally supported by evidence.
- § Easy (they say): We know stability of color, chemical properties, etc.
- § No help. Make grue-like hypotheses consistent with current knowledge.

- Examine many emeralds up to time t.
- All these emeralds were green.
- This supports inductive inference: "All emeralds are green."
- § Consider the property "grue": "green up to time t and blue thereafter."
- § The evidence supports inductive inference: "All emeralds are grue."
- § Hume's 2nd problem (Goodman):
 - How to decide between these inductive inferences?
 - Each is equally supported by evidence.
- § Easy (they say): We know stability of color, chemical properties, etc.
- § No help. Make grue-like hypotheses consistent with current knowledge.
 - Past does not constrain the future.
 - Hume: "Whatever is may not be."¹⁰

¹⁰Hume, D. An Inquiry Concerning Human Understanding, 1748, p.161.

§ Why are Hume's problems important:

- for risk analysis?
- in general?

§ Why are Hume's problems important:

- for risk analysis?
- in general?

§ Induction is important:

- Learn from experience by induction.
- Base decisions on knowledge.

§ Why are Hume's problems important:

- for risk analysis?
- in general?

§ Induction is important:

- Learn from experience by induction.
- Base decisions on knowledge.
- § We need to know:
 - What inferences are valid? (green or grue)
 - What knowledge is warranted.
 - What learning algorithms are valid?

Part II

Some Thoughts on How to Proceed

5 Epistemic Paralysis

 $¹⁰_{\text{lectures}\times \text{lib}\times \text{paral01.tex}} 5.4.2012$

§ Epistemic paralysis (Locke's wingless man): "If we will disbelieve everything, because we cannot certainly know all things; we shall do muchwhat as wisely as he, who would not use his legs, but sit still and perish, because he had no wings to fly".¹¹

¹¹Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse, editor. Penquin Books, 1997, I.i.5.

§ Epistemic paralysis (Locke's wingless man):
"If we will disbelieve everything, because we cannot certainly know all things; we shall do muchwhat as wisely as he, who would not use his legs, but sit still and perish, because he had no wings to fly".¹²
Belief and action justified

despite uncertainty.

¹²Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse, editor. Penquin Books, 1997, I.i.5.

- § Epistemic paralysis (Locke's wingless man):
 "If we will disbelieve everything, because we cannot certainly know all things; we shall do muchwhat as wisely as he, who would not use his legs, but sit still and perish, because he had no wings to fly".¹³
 Belief and action justified
 - despite uncertainty.
- § Practical implications:
 - Acquire best available "models:" data, knowledge, understanding,

¹³Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse, editor. Penquin Books, 1997, I.i.5.

- § Epistemic paralysis (Locke's wingless man):
 "If we will disbelieve everything, because we cannot certainly know all things; we shall do muchwhat as wisely as he, who would not use his legs, but sit still and perish, because he had no wings to fly".¹⁴
 Belief and action justified
 - despite uncertainty.
- § Practical implications:
 - Acquire best available "models:" data, knowledge, understanding,
 - Acknowledge: better models in future.
 - •

¹⁴Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse, editor. Penquin Books, 1997, I.i.5.

- § Epistemic paralysis (Locke's wingless man):
 "If we will disbelieve everything, because we cannot certainly know all things; we shall do muchwhat as wisely as he, who would not use his legs, but sit still and perish, because he had no wings to fly".¹⁵
 Belief and action justified
 - despite uncertainty.

§ Practical implications:

- Acquire best available "models:" data, knowledge, understanding,
- Acknowledge: better models in future.
- Balance between skepticism and action. Tools needed for this balancing.

¹⁵Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse, editor. Penquin Books, 1997, I.i.5.

6 Models and Robustness

¹⁵\lectures\talks\lib\models-rbs01.tex 8.4.2012

§ Avoiding epistemic paralysis: many tools. We focus on concepts of robustness.

§ Avoiding epistemic paralysis: many tools. We focus on concepts of robustness.

- § 'Robust' means (OED):
 - 'Strong and hardy; sturdy; healthy'.
 - 'Not easily damaged or broken, resilient'.
 - •

- § Avoiding epistemic paralysis: many tools. We focus on concepts of robustness.
- § 'Robust' means (OED):
 - 'Strong and hardy; sturdy; healthy'.
 - 'Not easily damaged or broken, resilient'.
 - Robust statistical test yields approximately correct results despite falsity of assumptions or data.

- § Avoiding epistemic paralysis: many tools. We focus on concepts of robustness.
- § 'Robust' means (OED):
 - 'Strong and hardy; sturdy; healthy'.
 - 'Not easily damaged or broken, resilient'.
 - Robust statistical test yields approximately correct results despite falsity of assumptions or data.
 - Robust decision:
 - Outcome is satisfactory despite error.
 - Resilient to surprise.
 - Immune to ignorance.

- Robust statistics.¹⁶

¹⁶Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

- Robust statistics.¹⁷
- Robust control.¹⁸

¹⁷Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

¹⁸Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle River, New Jersey.

- Robust statistics.¹⁹
- Robust control.²⁰
- Robust decision making.²¹
- •

¹⁹Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

²⁰Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle River, New Jersey.

²¹Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis*, RAND Corp., Santa Monica, CA.

- Robust statistics.²²
- Robust control.²³
- Robust decision making.²⁴
- Robust flexibility.²⁵
- •

²²Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

²³Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

²⁴Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis,* RAND Corp., Santa Monica, CA.

²⁵Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict, John Wiley, New York.

- Robust statistics.²⁶
- Robust control.²⁷
- Robust decision making.²⁸
- Robust flexibility.²⁹
- Robust economics.³⁰
- •

²⁶Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

²⁷Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

²⁸Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis*, RAND Corp., Santa Monica, CA.

²⁹Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict, John Wiley, New York.*

³⁰Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

- Robust statistics.³¹
- Robust control.³²
- Robust decision making.³³
- Robust flexibility.³⁴
- Robust economics.³⁵
- Info-gap robustness.³⁶
- • •

³¹Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

³²Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

³³Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis*, RAND Corp., Santa Monica, CA.

³⁴Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict*, John Wiley, New York.

³⁵Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

³⁶Ben-Haim, Yakov, 2006, *Info-gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, London.

- Robust statistics.³⁷
- Robust control.³⁸
- Robust decision making.³⁹
- Robust flexibility.⁴⁰
- Robust economics.⁴¹
- Info-gap robustness.⁴²
- . . .
- **§** Theories of robustness differ. Some are:
 - Probabilistic.

³⁷Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

³⁸Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

³⁹Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis,* RAND Corp., Santa Monica, CA.

⁴⁰Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict*, John Wiley, New York.

⁴¹Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

⁴²Ben-Haim, Yakov, 2006, *Info-gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, London.

- Robust statistics.⁴³
- Robust control.⁴⁴
- Robust decision making.⁴⁵
- Robust flexibility.⁴⁶
- Robust economics.⁴⁷
- Info-gap robustness.⁴⁸
- . . .
- **§** Theories of robustness differ. Some are:
 - Probabilistic.
 - Axiomatic with optimality conditions.

 ⁴³Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.
 ⁴⁴Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle

River, New Jersey.
 ⁴⁵Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

⁴⁶Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict*, John Wiley, New York.

⁴⁷Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

⁴⁸Ben-Haim, Yakov, 2006, *Info-gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, London.

- Robust statistics.⁴⁹
- Robust control.⁵⁰
- Robust decision making.⁵¹
- Robust flexibility.⁵²
- Robust economics.⁵³
- Info-gap robustness.⁵⁴
- . . .
- **§** Theories of robustness differ. Some are:
 - Probabilistic.
 - Axiomatic with optimality conditions.
 - Plausible reasoning from given models.
 - •

⁴⁹Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

⁵⁰Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

⁵¹Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis,* RAND Corp., Santa Monica, CA.

⁵²Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict*, John Wiley, New York.

⁵³Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

⁵⁴Ben-Haim, Yakov, 2006, *Info-gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, London.

- Robust statistics.⁵⁵
- Robust control.⁵⁶
- Robust decision making.⁵⁷
- Robust flexibility.⁵⁸
- Robust economics.⁵⁹
- Info-gap robustness.⁶⁰
- . . .
- **§** Theories of robustness differ. Some are:
 - Probabilistic.
 - Axiomatic with optimality conditions.
 - Plausible reasoning from given models.
 - Pragmatic and ad hoc.

⁵⁵Huber, Peter J., 1981, *Robust Statistics*, John Wiley, New York.

⁵⁶Zhou, Kemin; John C. Doyle, 1997, *Essentials of Robust Control*, Prentice Hall, Upper Saddle River, New Jersey.

⁵⁷Lempert RJ, Popper SW, Bankes SC, 2003, *Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy Analysis*, RAND Corp., Santa Monica, CA.

⁵⁸Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosenhead, ed. *Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity, Uncertainty and Conflict*, John Wiley, New York.

⁵⁹Hansen, Lars Peter and Thomas J. Sargent, 2008, *Robustness*, Princeton University Press, Princeton and Oxford.

⁶⁰Ben-Haim, Yakov, 2006, *Info-gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, London.

§ Is non-probabilistic robustness a good probabilistic bet?

§ Is non-probabilistic robustness a good probabilistic bet?

- Yes, in many (not all) cases.

§ Is non-probabilistic robustness a good probabilistic bet?

- Yes, in many (not all) cases.
- Examples (see earlier lecture⁶¹):
 - Animal foraging.
 - Financial markets.
 - Many engineering designs.

0...

 $^{^{61}\}mbox{Paradox}$ of Choice: Why More is less, \lectures \talks\lib\pdox-choice01.tex

§ Innovation dilemma:

- 2nd look. (See earlier lecture⁶²)
- Is robustness good response to innovation dilemma?

 $^{^{62}\}mbox{No-Failure Design and Disaster Recovery Lessons from Fukushima, \lectures\talks\lib\no-faildisas-rec01.tex}$

7 Innovation Dilemma

⁶²\lectures\talks\lib\innov-dilem01.tex 8.5.2012

§ Choose between two options:

- Option 1:
 - \circ Innovative, promising, new technology.
 - Higher uncertainty.

•

§ Choose between two options:

- Option 1:
 - Innovative, promising, new technology.
 - Higher uncertainty.
- Option 2:
 - State of the art.
 - Lower uncertainty.

- Automotive collision control:
 - \circ Sensor-based computer control (innov).
 - \circ Reliable effective breaking system (SotA).

- Automotive collision control:
 - \circ Sensor-based computer control (innov).
 - \circ Reliable effective breaking system (SotA).
- Eradicate invasive species:
 - \circ New aerial pesticide (innov).
 - \circ Port quarantine (SotA).

- Automotive collision control:
 - \circ Sensor-based computer control (innov).
 - \circ Reliable effective breaking system (SotA).
- Eradicate invasive species:
 - \circ New aerial pesticide (innov).
 - \circ Port quarantine (SotA).
- Nurture economic growth in 3rd world:
 - Human capital, institutions (innov).
 - \circ Import technology, infrastructure (SotA).

•

- Automotive collision control:
 - \circ Sensor-based computer control (innov).
 - \circ Reliable effective breaking system (SotA).
- Eradicate invasive species:
 - \circ New aerial pesticide (innov).
 - \circ Port quarantine (SotA).
- Nurture economic growth in 3rd world:
 - Human capital, institutions (innov).
 - \circ Import technology, infrastructure (SotA).
- Financial investment:
 - New start-up firm (innov).
 - \circ US Treasury bonds (SotA).

•

- Automotive collision control:
 - \circ Sensor-based computer control (innov).
 - \circ Reliable effective breaking system (SotA).
- Eradicate invasive species:
 - \circ New aerial pesticide (innov).
 - \circ Port quarantine (SotA).
- Nurture economic growth in 3rd world:
 - Human capital, institutions (innov).
 - \circ Import technology, infrastructure (SotA).
- Financial investment:
 - New start-up firm (innov).
 - US Treasury bonds (SotA).
- Risk taking or avoiding:
 - \circ Nothing ventured, nothing gained $_{(innov)}.$
 - \circ Nothing ventured, nothing lost (SotA).

§ Decision strategies.

- Outcome optimization:
 - \circ Use models to predict outcomes.
 - Choose predicted best option.

•

§ Decision strategies.

- Outcome optimization:
 - \circ Use models to predict outcomes.
 - Choose predicted best option.
- Max-min (maximize the min reward):
 - \circ Specify level of uncertainty.
 - Use models to predict worst outcomes.
 - Choose the best worst-outcome.

§ Decision strategies.

- Outcome optimization:
 - \circ Use models to predict outcomes.
 - Choose predicted best option.
- Max-min (maximize the min reward):
 - Specify level of uncertainty.
 - \circ Use models to predict worst outcomes.
 - Choose the best worst-outcome.
- Robust satisficing:
 - Specify critical outcome requirements.
 - Use models to predict robustness.
 - Choose best rbs of adequate outcome.

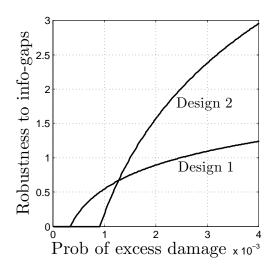
ullet

$\lib\innov-dilem01.tex$

§ Decision strategies.

- Outcome optimization:
 - \circ Use models to predict outcomes.
 - Choose predicted best option.
- Max-min (maximize the min reward):
 - Specify level of uncertainty.
 - \circ Use models to predict worst outcomes.
 - Choose the best worst-outcome.
- Robust satisficing:
 - Specify critical outcome requirements.
 - Use models to predict robustness.
 - \circ Choose best rbs of adequate outcome.
- Opportune windfalling:
 - Specify wonderful outcome aspiration.
 - \circ Use models to predict opportuneness.
 - Choose best ops of wonderful outcome.

$\lib\innov-dilem01.tex$

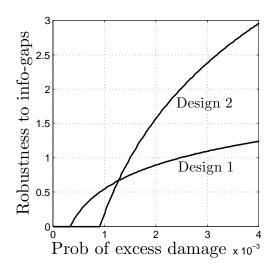

§ Decision strategies.

- Outcome optimization:
 - \circ Use models to predict outcomes.
 - Choose predicted best option.
- Max-min (maximize the min reward):
 - \circ Specify level of uncertainty.
 - \circ Use models to predict worst outcomes.
 - Choose the best worst-outcome.
- Robust satisficing:
 - Specify critical outcome requirements.
 - \circ Use models to predict robustness.
 - \circ Choose best rbs of adequate outcome.
- Opportune windfalling:
 - Specify wonderful outcome aspiration.
 - \circ Use models to predict opportuneness.
 - \circ Choose best ops of wonderful outcome.

§ Question:

Which strategy suitable for innovation dilemma?

§ Optimize or robust-satisfice?


§ Outcome optimization:

Des 1 predicted better than Des 2.

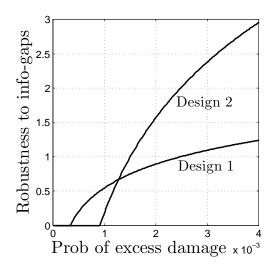
But predictions have zero robustness.

§

§ Optimize or robust-satisfice?

§ Outcome optimization:

Des 1 predicted better than Des 2.


But predictions have zero robustness.

§ Robust-satisficing:

Design 2 more robust for $P > P_{\times}$.

§

§ Optimize or robust-satisfice?

§ Outcome optimization:

Des 1 predicted better than Des 2.

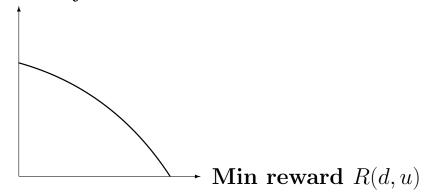
But predictions have zero robustness.

§ Robust-satisficing:

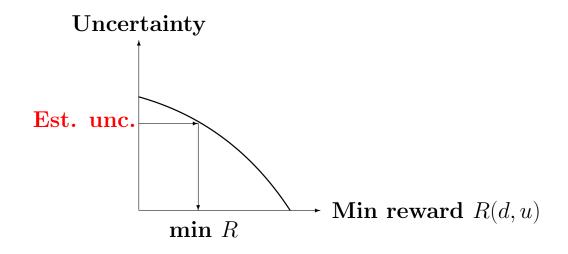
Design 2 more robust for $P > P_{\times}$.

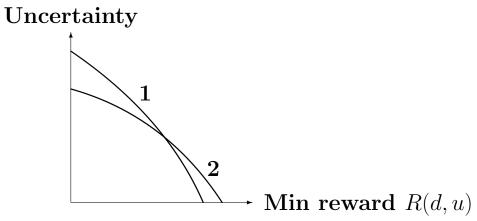
- § Resolve innovation dilemma:
 - Value judgment on outcome requirement.
 - Robustly satisfy requirement.

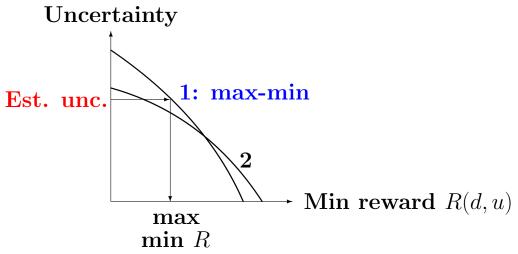
§ Is robustness good response to innovation dilemma?

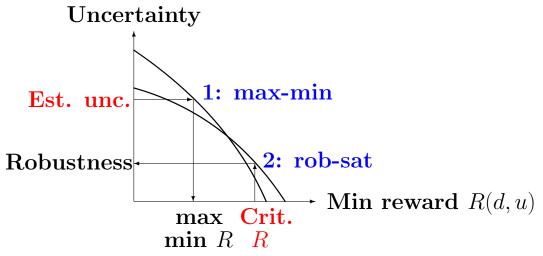

8 Max-Min and Robust-Satisficing

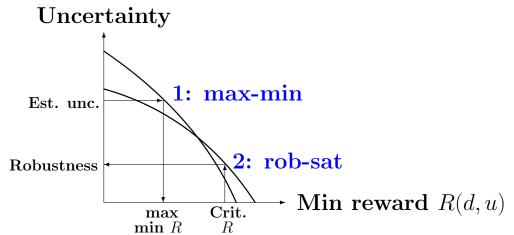
- § Task: make a decision.
 - d = decision.
 - u =uncertain parameters, functs., sets.
 - R(d, u) =**reward.**

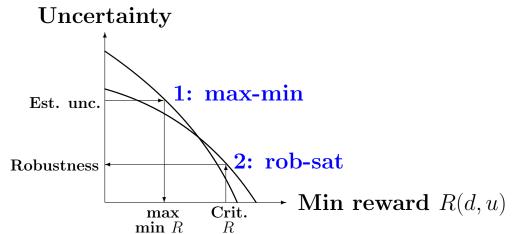

 $⁶²_{lectures \ talks \ lib \ maxmin-rs03 shrt.tex} 5.4.2012$

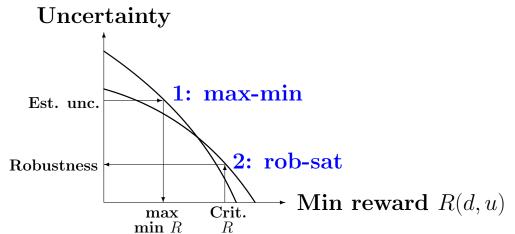

§ Trade-off: uncertainty vs. min reward.


Uncertainty



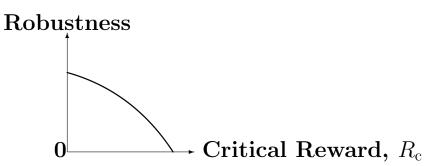

§ Trade-off: uncertainty vs. min reward.





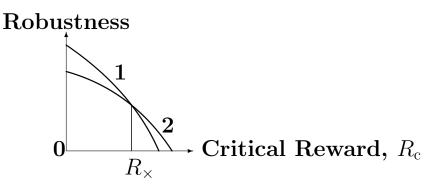
- § Modeller's equivalence: description.
 - Max-min can always describe rob-sat (by adjusting prior beliefs).
 - lacksquare

- § Modeller's equivalence: description.
 - Max-min can always describe rob-sat (by adjusting prior beliefs).
 - Rob-sat can always describe max-min (by adjusting requirements).



- § Modeller's equivalence: description.
- § Decision-maker's duality: prescription.

Max-min and rob-sat differ if:


- Max-min gain too low, or,
- Worst case is uncertain.

§ Optimizing vs Robustifying

- Trade off: Robustness vs performance.
- Zeroing: No rbs of predicted reward.

§ Optimizing vs Robustifying

- Trade off: Robustness vs performance.
- Zeroing: No rbs of predicted reward.
- Predicted optimum: 2.
- Robust-satisficing optimum: 2 iff $R_c > R_{\times}$.

§ Info-gap robustness is non-probabilistic. Is it a good bet?

- § Info-gap robustness is non-probabilistic. Is it a good bet?
- § Evolutionary advantage of robustness:
 - Robustness may proxy for
 - Probability of survival.
 - Proxy theorems.

9 Opportuneness

 $⁶²_{\text{lectures}\times1} 5.4.2012$

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.

§

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.
- § Favorable surprise:

Outcome better than w/o surprise.

§

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.
- § Favorable surprise:

Outcome better than w/o surprise.

§ Opportune decision:

enables or exploits favorable surprise.

§

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.
- § Favorable surprise:

Outcome better than w/o surprise.

§ Opportune decision:

enables or exploits favorable surprise.

- § Robustness and opportuneness:
 - Converses.
 - •

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.
- § Favorable surprise:

Outcome better than w/o surprise.

§ Opportune decision:

enables or exploits favorable surprise.

- **§** Robustness and opportuneness:
 - Converses.
 - Risk analysts mainly use robustness.
 - •

- Prevent high-consequence adverse events in critical technologies.
- Are risk averse.
- § Uncertainty:
 - Not necessarily pernicious.
 - May be propitious.
- § Favorable surprise:

Outcome better than w/o surprise.

§ Opportune decision:

enables or exploits favorable surprise.

- **§ Robustness and opportuneness:**
 - Converses.
 - Risk analysts mainly use robustness.
 - Opportuneness has 3 supporting roles.

§ Utility of opportuneness analysis:

- Choose from 2 options w/ similar rbs. Opportuneness can break the tie.

§ Utility of opportuneness analysis:

- Choose from 2 options w/ similar rbs. Opportuneness can break the tie.
- Robustness and opportuneness:
 - Not necessarily antagonistic.
 - May be sympathetic.

§ Utility of opportuneness analysis:

- Choose from 2 options w/ similar rbs. Opportuneness can break the tie.
- Robustness and opportuneness:
 - Not necessarily antagonistic.
 - May be sympathetic.
- If rbs and ops are antagonistic:

Trade some robustness for opportuneness.

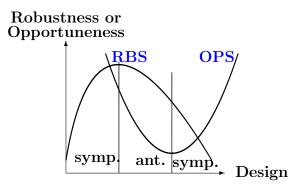


Figure 1: Robustness and opportuneness curves.

10 Conclusion

- Knowledge is limited.
- Uncertainty is unlimited.
- Other factors:

resources, psychology, institutions,

§

- Knowledge is limited.
- Uncertainty is unlimited.
- Other factors:

resources, psychology, institutions,

§ Responses:

- Learning: gain new knowledge.
- ullet

- Knowledge is limited.
- Uncertainty is unlimited.
- Other factors:

resources, psychology, institutions,

§ Responses:

- Learning: gain new knowledge.
- Robustness: protect against unknown.

•

- Knowledge is limited.
- Uncertainty is unlimited.
- Other factors:

resources, psychology, institutions,

§ Responses:

- Learning: gain new knowledge.
- Robustness: protect against unknown.
- **Opportuneness:** exploit the unknown.

•

- Knowledge is limited.
- Uncertainty is unlimited.
- Other factors:

resources, psychology, institutions,

§ Responses:

- Learning: gain new knowledge.
- Robustness: protect against unknown.
- Opportuneness: exploit the unknown.
- Methodological pluralism.

