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§ What is

Risk Analysis?
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§ Article titles from Risk Analysis:
e Pesticides and Methylmercury
in the United Arab Emirates.
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§ Article titles from Risk Analysis:
e Pesticides and Methylmercury
in the United Arab Emirates.
e Equation Reliability of
Soil Ingestion Estimates in
Mass-Balance Soil Ingestion

e An Overview of Maritime Waterway

Quantitative Risk Assessment Models

§ (Goals of risk analysis:
e Improve safety.
e Identify causes of injury.

e Support decision making.
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§ Components of risk analysis:

e Models of the process.
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§ Components of risk analysis:
e Models of the process.
e Performance requirements or

failure criteria.
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§ Components of risk analysis:
e Models of the process.
e Performance requirements or
failure criteria.

e Models of uncertainty.

§ Why is risk analysis hard?
e Complex variable processes.
e Conflicting requirements.

e Lots of uncertainty.

§ Other difficulties:
e Psychology.
e Social and cultural issues.

e Institutions.



Part 1
Why Risk Analysis is Difficult
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2 A Bit of History

O\lectures\talks\lib\bit—histo1 stex  8.4.2012
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§ History of human thought:

e Cerebral cortex: many 10,000s of years.
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§ History of human thought:
e Cerebral cortex: many 10,000s of years.
e Agriculture and settlement: 7-8,000 years.
e Writing: 5,000 years.
e Science:
o Ancient Greeks had some: 2,000 years.

o Mostly modern Europe: 500 years.
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§ History of Uncertainty:
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§ Ancient Greeks: Thinking about thinking.

Deduction, logic, axiomatization.
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§ Ancient Greeks: Thinking about thinking.

Deduction, logic, axiomatization.

§ Moderns: Thinking about uncertainty.

e Probability: Pascal, Fermat, ....

e Statistics: Induction, inference.
Bayesian, Neyman-Pearson, ....

e 3-valued logic (Lukaczewicz, 1917).

e Fuzzy logic (Zadeh, 1965).

e Min-max (Wald, 1945).

e P-boxes. Lower pre-visions.

e Dempster-Shafer. GIT.

e Info-gap theory.

§ We’re just beginning to understand

uncertainty.
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3 Shackle-Popper Indeterminism
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3.1 Shackle-Popper Indeterminism

O\lectures\talks\lib\indif5d—shackle—pop02,tex 5.4.2012
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g Intelligence:
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g Intelligence:
What people know,
influences how they behave.
§ Discovery:
What will be discovered tomorrow
cannot be known today.
§ Indeterminism:
Tomorrow’s behavior cannot be

modelled completely today.

§ Information-gaps, indeterminisms,
sometimes

cannot be modelled probabilistically.

§ Ignorance is not probabilistic.
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§ Two types of discoveries:
e Discover what does exist (recovery).
o America.

o HIV virus.

o House keys.
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§ Two types of discoveries:

e Discover what does exist (recovery).
o America.
o HIV wvirus.
o House keys.

e Discover what does not exist (invention).
o Mathematical theorem (Hardy disagreed).
o Idea of freedom.

o Beethoven’s 5th symphony.

§ Two corresponding types of universe:
e Discover what does exist.
Closed universe. Creation ended.
e Discover what does not exist.

Open universe. Creation continues.
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4  Hume and the Problem of Induction

O\lectures\talks\lib\hume-induco1 stex  8.4.2012
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§ Induction:
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§ Induction:
e Use evidence to make new

conclusion, generalization, prediction.

§ Hume’s problem (prelim smry):
e Induction cannot prove
validity of induction.
e Knowledge, including science,
based on induction.

e How to justify knowledge?
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§ Hume:

e “[W]e cannot give a satisfactory reason
why we believe, after a thousand experi-
ments, that a stone will fall or fire burn”.!

'Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier
Books, 1962, p.160.
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§ Hume:

e “[W]e cannot give a satisfactory reason
why we believe, after a thousand experi-

ments, that a stone will fall or fire burn”.”

e “For all inferences from experience sup-
pose, as their foundation, that the future
will resemble the past and that similar pow-
ers will be conjoined with similar sensible
qualities. ...

e “It is impossible, therefore, that any ar-
guments from experience can prove this re-
semblance of the past to the future, since all
these arguments are founded on the suppo-
sition of that resemblance.”®

§ Hume argues from

logical structure of induction.

§ Hume’s justification of induction: habit.

Today we’d say: psychology.

"Hume, D. An Inquiry Concerning Human Understanding, 1748, edited by Antony Flew. Collier
Books, 1962, p.160.
8Hume, D. An Inquiry Concerning Human Understanding, 1748, p.57.
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§ One can also argue from

empirical structure of induction.

§ One can never test the future:
e All tests occur now.
e All inductions are from past evidence.
e Rug metaphor:
The future can never be tested,
just as one can never step on
the rolled up part of an endless rug

unfurling always in front of you.’

9Yakov Ben-Haim, 2011, The end of science?
http: //decisions-and-info-gaps.blogspot.com/2011/10/end-of-science.html
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§ Goodman’s green and grue example.
e Examine many emeralds up to time t.
e All these emeralds were green.
e This supports inductive inference:

“All emeralds are green.”

§ Consider the property “grue”:

“oreen up to time ¢t and blue thereafter.”

§ The evidence supports inductive inference:

“All emeralds are grue.”

§ Hume’s 2nd problem (Goodman):
e How to decide between
these inductive inferences?

e Each is equally supported by evidence.

§ Easy (they say): We know stability of

color, chemical properties, etc.

§ No help. Make grue-like hypotheses
consistent with current knowledge.
e Past does not constrain the future.

e Hume: “Whatever ¢s may not be.” !’

OHume, D. An Inquiry Concerning Human Understanding, 1748, p.161.
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§ Why are Hume’s problems important:
e for risk analysis?

e in general?



\lib\ hume-induc01.tex RlSk AHaIySIS IS Dlﬁcu]t 136/63/62

§ Why are Hume’s problems important:
e for risk analysis?

e in general?

§ Induction is important:
e Learn from experience by induction.

e Base decisions on knowledge.



\lib\ hume-induc01.tex RlSk AHaIySIS IS Dlﬁcu]t 136/63/63

§ Why are Hume’s problems important:
e for risk analysis?

e in general?

§ Induction is important:
e Learn from experience by induction.

e Base decisions on knowledge.

§ We need to know:
e What inferences are valid? (green or grue)
¢ What knowledge is warranted.

¢ What learning algorithms are valid?
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5 Epistemic Paralysis

10\lectures\talks\lib\epistem—patalol tex  5.4.2012
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§ Epistemic paralysis (Locke’s wingless man):
“If we will disbelieve everything,
because we cannot certainly know all things;
we shall do muchwhat as wisely as he,
who would not use his legs,
but sit still and perish,

because he had no wings to fly”.!!

"Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse,
editor. Penquin Books, 1997, 1.i.5.
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2Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse,
editor. Penquin Books, 1997, 1.i.5.
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§ Epistemic paralysis (Locke’s wingless man):
“If we will disbelieve everything,
because we cannot certainly know all things;
we shall do muchwhat as wisely as he,
who would not use his legs,
but sit still and perish,
because he had no wings to fly”.!*

e Belief and action justified

despite uncertainty.

§ Practical implications:
e Acquire best available “models:”
data, knowledge, understanding, ....

e Acknowledge: better models in future.

“Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse,
editor. Penquin Books, 1997, 1.i.5.
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§ Epistemic paralysis (Locke’s wingless man):
“If we will disbelieve everything,
because we cannot certainly know all things;
we shall do muchwhat as wisely as he,
who would not use his legs,
but sit still and perish,
because he had no wings to fly”.!”

e Belief and action justified

despite uncertainty.

§ Practical implications:
e Acquire best available “models:”
data, knowledge, understanding, ....
e Acknowledge: better models in future.
e Balance between skepticism and action.

Tools needed for this balancing.

5Locke, John, An Essay Concerning Human Understanding, 5th edition, 1706. Roger Woolhouse,
editor. Penquin Books, 1997, 1.i.5.
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6 Models and Robustness

15\lectures\‘naulks\lib\models-rbsO1 tex  8.4.2012
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§ Avoiding epistemic paralysis: many tools.

We focus on concepts of robustness.
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§ Avoiding epistemic paralysis: many tools.

We focus on concepts of robustness.

§ ‘Robust’ means (OED):
e ‘Strong and hardy; sturdy; healthy’.

e ‘Not easily damaged or broken, resilient’.
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§ Avoiding epistemic paralysis: many tools.

We focus on concepts of robustness.

§ ‘Robust’ means (OED):
e ‘Strong and hardy; sturdy; healthy’.
e ‘Not easily damaged or broken, resilient’.
e Robust statistical test yields
approximately correct results despite

falsity of assumptions or data.
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§ Avoiding epistemic paralysis: many tools.

We focus on concepts of robustness.

§ ‘Robust’ means (OED):
e ‘Strong and hardy; sturdy; healthy’.
e ‘Not easily damaged or broken, resilient’.
e Robust statistical test yields
approximately correct results despite
falsity of assumptions or data.
e Robust decision:
o Outcome is satisfactory despite error.
o Resilient to surprise.

o Immune to ignorance.
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§ Robustness operationalized in many ways:

e Robust statistics.!f

6Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.
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§ Robustness operationalized in many ways:
e Robust statistics.!”
e Robust control.'®

"Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.
187Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.
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§ Robustness operationalized in many ways:
e Robust statistics.’
e Robust control.?
e Robust decision making.?!

9Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

20Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

21 Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.
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§ Robustness operationalized in many ways:
e Robust statistics.?”
e Robust control.?
e Robust decision making.?!
e Robust flexibility.?

22Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

23Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

24Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

25Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complezity,
Uncertainty and Conflict, John Wiley, New York.
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§ Robustness operationalized in many ways:

e Robust statistics.?"

e Robust control.?’

e Robust decision making.?®

e Robust flexibility.?

¢ Robust economics.?’

26Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

27Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

28Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

29Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity,
Uncertainty and Conflict, John Wiley, New York.

30Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.
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§ Robustness operationalized in many ways:

e Robust statistics.?!

¢ Robust control.??

e Robust decision making.?’

e Robust flexibility.>*

e Robust economics.>®

e Info-gap robustness.*

31Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

32Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

33Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

34Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complezity,
Uncertainty and Conflict, John Wiley, New York.

35Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.

36Ben-Haim, Yakov, 2006, Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd ed.,
Academic Press, London.
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§ Robustness operationalized in many ways:

¢ Robust statistics.?’

¢ Robust control.?®

e Robust decision making.?

e Robust flexibility.*

e Robust economics.*!

e Info-gap robustness.*

§ Theories of robustness differ. Some are:

e Probabilistic.

3THuber, Peter J., 1981, Robust Statistics, John Wiley, New York.

38Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

39Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

40Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complezity,
Uncertainty and Conflict, John Wiley, New York.

“Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.

42Ben-Haim, Yakov, 2006, Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd ed.,
Academic Press, London.
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§ Robustness operationalized in many ways:
e Robust statistics.*?
e Robust control.*
e Robust decision making.*
e Robust flexibility.*

e Robust economics.?’

e Info-gap robustness.*®

§ Theories of robustness differ. Some are:
e Probabilistic.
e Axiomatic with optimality conditions.

“3Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

447hou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

45Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

46Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complezity,
Uncertainty and Conflict, John Wiley, New York.

4"Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.

48Ben-Haim, Yakov, 2006, Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd ed.,
Academic Press, London.
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§ Robustness operationalized in many ways:
e Robust statistics.*
e Robust control.””
e Robust decision making.”!
e Robust flexibility.”

e Robust economics.”?

e Info-gap robustness.”

§ Theories of robustness differ. Some are:
e Probabilistic.
e Axiomatic with optimality conditions.
e Plausible reasoning from given models.

49Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

%0Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

51Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

52Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity,
Uncertainty and Conflict, John Wiley, New York.

53Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.

54 Ben-Haim, Yakov, 2006, Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd ed.,
Academic Press, London.
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§ Robustness operationalized in many ways:
e Robust statistics.”
e Robust control.”®
e Robust decision making.”’
e Robust flexibility.”®

¢ Robust economics.”’

e Info-gap robustness.?

§ Theories of robustness differ. Some are:
e Probabilistic.
e Axiomatic with optimality conditions.
e Plausible reasoning from given models.

e Pragmatic and ad hoc.

®>Huber, Peter J., 1981, Robust Statistics, John Wiley, New York.

56Zhou, Kemin; John C. Doyle, 1997, Essentials of Robust Control, Prentice Hall, Upper Saddle
River, New Jersey.

57Lempert RJ, Popper SW, Bankes SC, 2003, Shaping the Next 100 Years: New Methods for Quan-
titative, Long-Term Policy Analysis, RAND Corp., Santa Monica, CA.

%8Rosenhead, Jonathan, 1989, Robustness analysis: Keeping your options open, in Jonathan Rosen-
head, ed. Rational Analysis For a Problematic World: Problem Structuring Methods For Complexity,
Uncertainty and Conflict, John Wiley, New York.

59Hansen, Lars Peter and Thomas J. Sargent, 2008, Robustness, Princeton University Press, Prince-
ton and Oxford.

60Ben-Haim, Yakov, 2006, Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd ed.,
Academic Press, London.
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§ Is non-probabilistic robustness a

good probabilistic bet?
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§ Is non-probabilistic robustness a
good probabilistic bet?
e Yes, in many (not all) cases.
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§ Is non-probabilistic robustness a
good probabilistic bet?
e Yes, in many (not all) cases.
e Examples (see earlier lecture’!):
o Animal foraging.
o Financial markets.
o Many engineering designs.

O e o o

61Paradox of Choice: Why More is less, \lectures\talks\lib\pdox-choice01.tex
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§ Innovation dilemma:
e 2nd look. (See earlier lecture®)
e Is robustness good response to

innovation dilemma?

62No-Failure Design and Disaster Recovery Lessons from Fukushima, \lectures\talks\lib\no-fail-
disas-recOl.tex
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7 Innovation Dilemma

62\lectures\talks\lib\innov—dilemo1 .tex  8.5.2012
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§ Choose between two options:
e Option 1:
o Innovative, promising, new technology.

o Higher uncertainty.
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§ Choose between two options:
e Option 1:
o Innovative, promising, new technology.
o Higher uncertainty.
e Option 2:
o State of the art.

o Lower uncertainty.



\lib\ innov-dilem01.tex Info—Gap Theory 136/105/93

§ Examples of the innovation dilemma:
e Automotive collision control:
o Sensor-based computer control (innov).
o Reliable effective breaking system (SotA).
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§ Examples of the innovation dilemma:
e Automotive collision control:
o Sensor-based computer control (innov).
o Reliable effective breaking system (SotA).
e Eradicate invasive species:
o New aerial pesticide (innov).
o Port quarantine (SotA).
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§ Examples of the innovation dilemma:

e Automotive collision control:
o Sensor-based computer control (innov).
o Reliable effective breaking system (SotA).

e Eradicate invasive species:
o New aerial pesticide (innov).
o Port quarantine (SotA).

e Nurture economic growth in 3rd world:
o Human capital, institutions (innov).
o Import technology, infrastructure (SotA).
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§ Examples of the innovation dilemma:
e Automotive collision control:
o Sensor-based computer control (innov).
o Reliable effective breaking system (SotA).
e Eradicate invasive species:
o New aerial pesticide (innov).
o Port quarantine (SotA).
e Nurture economic growth in 3rd world:
o Human capital, institutions (innov).
o Import technology, infrastructure (SotA).
e Financial investment:

o New start-up firm (innov).
o US Treasury bonds (SotA).
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§ Examples of the innovation dilemma:
e Automotive collision control:
o Sensor-based computer control (innov).
o Reliable effective breaking system (SotA).
e Eradicate invasive species:
o New aerial pesticide (innov).
o Port quarantine (SotA).
e Nurture economic growth in 3rd world:
o Human capital, institutions (innov).
o Import technology, infrastructure (SotA).
e Financial investment:
o New start-up firm (innov).
o US Treasury bonds (SotA).
e Risk taking or avoiding:
o Nothing ventured, nothing gained (innov).

o Nothing ventured, nothing lost (SotA).
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§ Decision strategies.
e Outcome optimization:
o Use models to predict outcomes.

o Choose predicted best option.
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§ Decision strategies.
e Outcome optimization:
o Use models to predict outcomes.
o Choose predicted best option.
e Max-min (maximize the min reward):
o Specify level of uncertainty.
o Use models to predict worst outcomes.

o Choose the best worst-outcome.
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§ Decision strategies.

e Outcome optimization:
o Use models to predict outcomes.
o Choose predicted best option.

e Max-min (maximize the min reward):
o Specify level of uncertainty.
o Use models to predict worst outcomes.
o Choose the best worst-outcome.

e Robust satisficing:
o Specity critical outcome requirements.
o Use models to predict robustness.

o Choose best rbs of adequate outcome.
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§ Decision strategies.
e Outcome optimization:
o Use models to predict outcomes.
o Choose predicted best option.
e Max-min (maximize the min reward):
o Specify level of uncertainty.
o Use models to predict worst outcomes.
o Choose the best worst-outcome.
e Robust satisficing:
o Specity critical outcome requirements.
o Use models to predict robustness.
o Choose best rbs of adequate outcome.
e Opportune windfalling:
o Specity wonderful outcome aspiration.
o Use models to predict opportuneness.

o Choose best ops of wonderful outcome.
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§ Decision strategies.
e Outcome optimization:
o Use models to predict outcomes.
o Choose predicted best option.
e Max-min (maximize the min reward):
o Specify level of uncertainty.
o Use models to predict worst outcomes.
o Choose the best worst-outcome.
e Robust satisficing:
o Specity critical outcome requirements.
o Use models to predict robustness.
o Choose best rbs of adequate outcome.
e Opportune windfalling:
o Specity wonderful outcome aspiration.
o Use models to predict opportuneness.

o Choose best ops of wonderful outcome.

§ Question:

Which strategy suitable for innovation dilemma?
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§ Optimize or robust-satisfice?

3
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Design 1

Robustness to info-gaps

0

0 1 2 3 4
Prob of excess damage x10°

§ Outcome optimization:
Des 1 predicted better than Des 2.

But predictions have zero robustness.

8
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§ Optimize or robust-satisfice?
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§ Outcome optimization:
Des 1 predicted better than Des 2.

But predictions have zero robustness.

§ Robust-satisficing:
Design 2 more robust for P > P..



\lib\ innov-dilem01.tex IHfO— Gap Theory 136/105/105

§ Optimize or robust-satisfice?

3
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Design 1

Robustness to info-gaps

0

0 1 2 3 4
Prob of excess damage x10°

§ Outcome optimization:
Des 1 predicted better than Des 2.

But predictions have zero robustness.

§ Robust-satisficing:
Design 2 more robust for P > P..

§ Resolve innovation dilemma:
e Value judgment on outcome requirement.

e Robustly satisfy requirement.
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§ Is robustness good response to

innovation dilemma?
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8 Maz-Min and Robust-Satisficing

g Task: make a decision.
e d = decision.
e 1, = uncertain parameters, functs., sets.

e R(d,u) = reward.

62 lectures\talks\lib\maxmin-rsO3shrt.tex 5.4.2012
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§ Trade-off: uncertainty vs. min reward.

Uncertainty

y

- Min reward R(d,u)
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§ Trade-off: uncertainty vs. min reward.

Uncertainty

y

Est. unc. \

- Min reward R(d,u)

min R
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§ Choose from 2 decisions: d;, ds.

Uncertainty

y

- Min reward R(d,u)
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§ Choose from 2 decisions: d;, ds.

Uncertainty

Est. unc.

\ 1: max-min
~

max
min R

- Min reward R(d,u)



lib\ maxmin-rs03shrt.tex IHfO— Gap TheOFy 136/119/1 12

§ Choose from 2 decisions: d;, ds.

Uncertainty
Est. unc.\\ 1: max-min
Robustness 2: rob-sat
\ - Min reward R(d,u)

max Crit.

min R R
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§ Choose from 2 decisions: d;, ds.

Uncertainty
Est. unc.\\‘ 1: max-min
Robustness 2: rob-sat
————o—— Min reward R(d,u)
min R R

§ Modeller’s equivalence: description.
e Max-min can always describe rob-sat

(by adjusting prior beliefs).
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§ Choose from 2 decisions: d;, ds.

Uncertainty
Est. unc.\\‘ 1: max-min
Robustness 2: rob-sat
————o—— Min reward R(d,u)
min R R

§ Modeller’s equivalence: description.
e Max-min can always describe rob-sat
(by adjusting prior beliefs).
e Rob-sat can always describe max-min

(by adjusting requirements).
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§ Choose from 2 decisions: d;, ds.

Uncertainty
Est. unc.\\‘ 1: max-min
Robustness 2: rob-sat
————o—— Min reward R(d,u)
min R R

§ Modeller’s equivalence: description.

§ Decision-maker’s duality: prescription.
Max-min and rob-sat differ if:
e Max-min gain too low, or,

e Worst case is uncertain.
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§ Optimizing vs Robustifying

Robu§t ness

0 - Critical Reward, R.

e Trade off: Robustness vs performance.

e Zeroing: No rbs of predicted reward.
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§ Optimizing vs Robustifying
Robustness

1

2
0 - Critical Reward, R.

X

e Trade off: Robustness vs performance.
e Zeroing: No rbs of predicted reward.
e Predicted optimum: 2.

e Robust-satisficing optimum: 2 iff R. > R..
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§ Info-gap robustness is non-probabilistic.

Is it a good bet?
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§ Info-gap robustness is non-probabilistic.

Is it a good bet?

§ Evolutionary advantage of robustness:
e Robustness may proxy for
Probability of survival.

e Proxy theorems.
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9 Opportuneness

62\lectures\talks\lib\opportunenesso1 tex  5.4.2012
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§ Risk analysts:
e Prevent high-consequence adverse events
in critical technologies.

e Are risk averse.
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§ Risk analysts:
e Prevent high-consequence adverse events
in critical technologies.

e Are risk averse.

§ Uncertainty:
e Not necessarily pernicious.

e May be propitious.
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§ Risk analysts:
e Prevent high-consequence adverse events
in critical technologies.

e Are risk averse.

§ Uncertainty:
e Not necessarily pernicious.

e May be propitious.

§ Favorable surprise:

Outcome better than w/o surprise.
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§ Risk analysts:
e Prevent high-consequence adverse events
in critical technologies.
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e Not necessarily pernicious.
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§ Favorable surprise:
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§ Opportune decision:
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3 Robustness and opportuneness:

e Converses.
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§ Risk analysts:
e Prevent high-consequence adverse events
in critical technologies.

e Are risk averse.

§ Uncertainty:
e Not necessarily pernicious.

e May be propitious.

§ Favorable surprise:

Outcome better than w/o surprise.

§ Opportune decision:

enables or exploits favorable surprise.

3 Robustness and opportuneness:
e Converses.
e Risk analysts mainly use robustness.

e Opportuneness has 3 supporting roles.
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§ Utility of opportuneness analysis:
e Choose from 2 options w/ similar rbs.

Opportuneness can break the tie.
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§ Utility of opportuneness analysis:
e Choose from 2 options w/ similar rbs.
Opportuneness can break the tie.
e Robustness and opportuneness:
o Not necessarily antagonistic.

o May be sympathetic.
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§ Utility of opportuneness analysis:
e Choose from 2 options w/ similar rbs.
Opportuneness can break the tie.
e Robustness and opportuneness:
o Not necessarily antagonistic.
o May be sympathetic.
e If rbs and ops are antagonistic:

Trade some robustness for opportuneness.

Robustness or
Opportuneness

RBS OPS

Symp ant. Sym

~ Design

Figure 1: Robustness and opportuneness curves.
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§ Risk analysis is hard because:
e Knowledge is limited.
e Uncertainty is unlimited.
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§ Risk analysis is hard because:
e Knowledge is limited.
e Uncertainty is unlimited.

e Other factors:

resources, psychology, institutions, ....

3 Responses:
e Learning: gain new knowledge.
e Robustness: protect against unknown.
e Opportuneness: exploit the unknown.

e Methodological pluralism.




