Back to the Promised Land (Mathematical Analysis)

Yakov Ben-Haim

Technion

Israel Institute of Technology

 $^{^{0}\}$ lectures\talks\lib\promised-land01.tex 20.1.2016

Back to the Promised Land (Mathematical Analysis) promised-land01.tex

Contents

1	Highlights (promised-land01.tex)	3
2	Two Systems, One Test (two-systems02.tex)	14
3	Two Systems, One Test, CDF Known (two-systems02.tex)	27
4	Robustness of Two Systems, One Test (two-systems02.tex)	31
5	Three Systems, Two Tests (two-systems02.tex)	55
6	Three Systems, One Test (two-systems02.tex)	62
7	n Systems, m Tests (two-systems02.tex)	69
8	Extensions (promised-land01.tex)	70
9	Final Thoughts	71

 $lectures \verb+ talks \verb+ lib \verb+ promised-land01.tex$

1 Highlights

§ Binary decisions, expensive tests:

• Airplane designs: Lockheed or Raytheon?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?
 - Energy supply: Nuclear or fossil?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?
 - Energy supply: Nuclear or fossil?
- § How good is:
 - Our knowledge?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?
 - Energy supply: Nuclear or fossil?
- § How good is:
 - Our knowledge?
 - Our knowledge about our knowledge?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - Pollution control: Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?
 - Energy supply: Nuclear or fossil?
- § How good is:
 - Our knowledge?
 - Our knowledge about our knowledge?
 - Our intuition about our ignorance?

- § Binary decisions, expensive tests:
 - Airplane designs: Lockheed or Raytheon?
 - **Pollution control:** Tax or cap-and-trade?
 - Medical intervention: Surgery or pharmaceuticals?
 - Military budget: Tanks or intelligence?
 - Energy supply: Nuclear or fossil?
- § How good is:
 - Our knowledge?
 - Our knowledge about our knowledge?
 - Our intuition about our ignorance?
 - Our ability to use knowledge and manage ignorance?

Highlights

- § 2 Systems, 1 Test: Probabilistic Alg.
- § Info-gap uncertainty on pdf: Robustify.
- § *n* Systems, *m* Tests.
- § Source: http://info-gap.com

2 Two Systems, One Test

⁰ lectures\talks\lib\two-systems02.tex, 20.1.2016. See 'Problem Set on Info-Gap Uncertainty', \lectures\risk\homework\ps1_rk.tex, #10. Yakov Ben-Haim, 2011, Two for the price of one: Info-gap robustness of the 1-test algorithm, ISIPTA2011, 25-28 July 2011, Innsbruck, Austria.

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.
- § No prior knowledge?
 - Flip a fair coin.
 - 50/50 chance of success.

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.
- § No prior knowledge?
 - Flip a fair coin.
 - 50/50 chance of success.
- § One system tested: quality x_r .

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.
- § No prior knowledge?
 - Flip a fair coin.
 - 50/50 chance of success.
- § One system tested: quality x_r .
 - Enhanced chance of success?

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.
- § No prior knowledge?
 - Flip a fair coin.
 - 50/50 chance of success.
- § One system tested: quality x_r .
 - Enhanced chance of success?
 - Which system to use?

- § Two systems, with qualities $x_1 \neq x_2 \in \Re$.
 - Choose one system.
 - Bigger is better.
- § No prior knowledge?
 - Flip a fair coin.
 - 50/50 chance of success.
- § One system tested: quality x_r .
 - Enhanced chance of success?
 - Which system to use?
 - It looks like 1 measurement can't help.

- § Algorithm for choosing a system:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.

§ Algorithm for choosing a system:

- q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
- Draw y from q(y).

§ Algorithm for choosing a system:

- q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
- Draw y from q(y).
- If $y \ge x_r$ then choose un-tested system.

§ Algorithm for choosing a system:

- q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
- Draw y from q(y).
- If $y \ge x_r$ then choose un-tested system.
- If $y < x_r$ then choose tested system.

§ Algorithm for choosing a system:

- q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
- Draw y from q(y).
- If $y \ge x_r$ then choose un-tested system.
- If $y < x_r$ then choose tested system.
- § Probability of success, $P_s(q)$:

Probability of choosing larger x_i .

- § Algorithm for choosing a system:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
 - Draw y from q(y).
 - If $y \ge x_r$ then choose un-tested system.
 - If $y < x_r$ then choose tested system.
- § Probability of success, $P_s(q)$: Probability of choosing larger x_i .
- § Theorem (Thomas Cover, 1987):¹ If tested system chosen with probability 0.5, then $P_{\rm s}(q) > 0.5$.

¹Cover, Thomas M., 1987, Pick the largest number, chapter 5.1 in T. Cover and B. Gopinath, 1987, Open Problems in Communication and Computation, Springer-Verlag, Berlin.

3 Two Systems, One Test, CDF Known

§ F(x) is known cdf.

§ F(x) is known cdf.

- § Algorithm for choosing a system:
 - If $F(x_r) < \frac{1}{2}$, choose un-tested system.
 - If $F(x_r) \ge \frac{1}{2}$, choose tested system.

§ F(x) is known cdf.

§ Algorithm for choosing a system:

- If $F(x_r) < \frac{1}{2}$, choose un-tested system.
- If $F(x_r) \ge \frac{1}{2}$, choose tested system.
- § **Theorem:** $P_{\rm s} = \frac{3}{4}$

Proof: Robert R. Snapp, 2005.²

 $^{^2} Robert R.$ Snapp, 2005, U of Vermont, \papers\2-systems-1test\isipta2011\covers-problem.pdf

4 Robustness of Two Systems, One Test

- § Recall no-knowledge algorithm:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
 - Draw y from q(y).
 - If $y \ge x_r$ then choose un-tested system.
 - If $y < x_r$ then choose tested system.

- § Recall no-knowledge algorithm:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
 - Draw y from q(y).
 - If $y \ge x_r$ then choose un-tested system.
 - If $y < x_r$ then choose tested system.
- § Cover's Theorem: $P_s(q) > 0.5$.

- § Recall no-knowledge algorithm:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
 - Draw y from q(y).
 - If $y \ge x_r$ then choose un-tested system.
 - If $y < x_r$ then choose tested system.
- § Cover's Theorem: $P_s(q) > 0.5$.
- § How to choose q(y)?

Can we beat $P_{\rm s}(q) > 0.5$?

- § Recall no-knowledge algorithm:
 - q(y) is any pdf: q(y) > 0 for all $y \in \Re$.
 - Draw y from q(y).
 - If $y \ge x_r$ then choose un-tested system.
 - If $y < x_r$ then choose tested system.
- § Cover's Theorem: $P_{s}(q) > 0.5$.
- § How to choose q(y)? Can we beat $P_s(q) > 0.5$?
- § If we know $p(x_i)$ then $P_s = 0.75$. Can we achieve $P_s(q) = 0.75$ w/o knowing $p(x_i)$?

§ Info-gap robust-satisficing:

- Our guess: $x \sim \widetilde{p}(x)$.
§ Info-gap robust-satisficing:

- Our guess: $x \sim \tilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.

§ Info-gap robust-satisficing:

- Our guess: $x \sim \tilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.
- Choose q(y) to robust satisfice:
 - \circ Satisfy $P_{\rm s} \geq P_{\rm c}$.

0

§ Info-gap robust-satisficing:

- Our guess: $x \sim \tilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.
- Choose q(y) to robust satisfice:
 - \circ Satisfy $P_{\rm s} \ge P_{\rm c}$.
 - \circ Maximize robustness to uncertain \tilde{p} .

- § Info-gap model for uncertain $\widetilde{p}(x)$: $\mathcal{U}(h)$.
 - Nesting: $h < h' \implies \mathcal{U}(h) \subseteq \mathcal{U}(h')$.

- § Info-gap model for uncertain $\widetilde{p}(x)$: $\mathcal{U}(h)$.
 - Nesting: $h < h' \implies \mathcal{U}(h) \subseteq \mathcal{U}(h')$.
 - Contraction: $\mathcal{U}(0) = \{ \widetilde{p} \}.$

- § Info-gap model for uncertain $\tilde{p}(x)$: $\mathcal{U}(h)$.
 - Nesting: $h < h' \implies \mathcal{U}(h) \subseteq \mathcal{U}(h')$.
 - Contraction: $\mathcal{U}(0) = \{ \widetilde{p} \}.$
 - $\bullet~h~{\rm is}~{\rm unbounded}~{\rm horizon}~{\rm of}~{\rm uncertainty}.$

§ Robustness, $\hat{h}(q, P_c)$:

Maximum tolerable uncertainty.

$$\widehat{h}(q, P_{c}) = \max\left\{h: \left(\min_{p \in \mathcal{U}(h)} P_{s}(q|p)\right) \ge P_{c}\right\}$$

- Estimated pdf: $\tilde{p}(x) = \tilde{\lambda} e^{-\tilde{\lambda}x}$.

- Estimated pdf: $\widetilde{p}(x) = \widetilde{\lambda} e^{-\widetilde{\lambda}x}$.
- Decision pdf: $q(y) = \gamma e^{-\gamma y}$. Need to choose γ .

- Estimated pdf: $\widetilde{p}(x) = \widetilde{\lambda} e^{-\widetilde{\lambda}x}$.
- Decision pdf: $q(y) = \gamma e^{-\gamma y}$. Need to choose γ .
- Prob of success: $P_{\rm s}(q|\tilde{p}) > 0.5$

§ Example:

- Estimated pdf: $\tilde{p}(x) = \tilde{\lambda} e^{-\tilde{\lambda}x}$.
- Decision pdf: $q(y) = \gamma e^{-\gamma y}$. Need to choose γ .
- Prob of success: $P_{\rm s}(q|\tilde{p}) > 0.5$
- Putative optimal choice:

$$\gamma^{\star} = \arg \max_{\gamma} P_{s}(q|\widetilde{p})$$

= $\widetilde{\lambda}\sqrt{2}$

• E.g., $\tilde{\lambda} = 1$: $P_{\rm s}(q|\tilde{p}) = 0.67 \gg 0.5$

- Estimated pdf: $\tilde{p}(x) = \tilde{\lambda} e^{-\tilde{\lambda}x}$.
- Decision pdf: $q(y) = \gamma e^{-\gamma y}$. Need to choose γ .
- Prob of success: $P_{\rm s}(q|\tilde{p}) > 0.5$
- Putative optimal choice:

$$\gamma^{\star} = \arg \max_{\gamma} P_{s}(q|\widetilde{p})$$

= $\widetilde{\lambda}\sqrt{2}$

- E.g., $\tilde{\lambda} = 1$: $P_{\rm s}(q|\tilde{p}) = 0.67 \gg 0.5$
- Robust to uncertainty in $\tilde{p}(x)$???

Figure 1: Robustness curves with $\tilde{\lambda} = 1$.

§ Zeroing:

Estimated prob of success: no robustness.

Figure 2: Robustness curves with $\tilde{\lambda} = 1$.

§ Zeroing:

Estimated prob of success: no robustness.

§ Trade off: robustness vs prob. of success.

Figure 3: Robustness curves with $\tilde{\lambda} = 1$.

Figure 4: Robustness curves with $\tilde{\lambda} = 1$.

Figure 5: Robustness curves with $\tilde{\lambda} = 1$.

§ Zeroing: no robustness of estimate.

Figure 6: Robustness curves with $\tilde{\lambda} = 1$.

§ Zeroing: no robustness of estimate.

§ Trade off: robustness vs prob. of success.

Figure 7: Robustness curves with $\tilde{\lambda} = 1$.

- § Zeroing: no robustness of estimate.
- § Trade off: robustness vs prob. of success.
- § Preference reversal.
 - $\gamma = \sqrt{2}$ more robust for $P_{\rm c} > 0.62$.
 - $\gamma = 1/\sqrt{2}$ more robust for $P_{\rm c} < 0.62$.

5 Three Systems, Two Tests

 $x_1 < x_2 < x_3$

 $x_1 < x_2 < x_3$

§ Test two systems with revealed attributes:

 $r_1 < r_2$

 $x_1 < x_2 < x_3$

§ Test two systems with revealed attributes:

 $r_1 < r_2$

§ Goal: Exclude worst system.

 $x_1 < x_2 < x_3$

§ Test two systems with revealed attributes:

 $r_1 < r_2$

- § Goal: Exclude worst system.
- § Blind probability of success: $\frac{1}{3}$

§ Algorithm:

- q(y) any non-zero pdf on \Re .
- Draw y from q(q).
- If $y < r_1$ choose 2 tested systems.
- If $r_1 \leq y$ choose r_2 and untested system.

§ Algorithm:

- q(y) any non-zero pdf on \Re .
- Draw y from q(q).
- If $y < r_1$ choose 2 tested systems.
- If $r_1 \leq y$ choose r_2 and untested system.

§ Theorem:

If tested systems chosen with equal prob. then $P_{\rm s}(q) > \frac{1}{3}$.

6 Three Systems, One Test

 $x_1 < x_2 < x_3$

 $x_1 < x_2 < x_3$

§ Test one system with revealed attribute r.

 $x_1 < x_2 < x_3$

- § Test one system with revealed attribute r.
- § Goal: Select best system.

 $x_1 < x_2 < x_3$

- § Test one system with revealed attribute r.
- § Goal: Select best system.
- § Blind probability of success: $\frac{1}{3}$

§ Algorithm:

- q(y) any non-zero pdf on \Re .
- Draw y from q(q).
- If $y \leq r$ choose tested system.
- If r < y choose equi-prob from untested.

§ Algorithm:

- q(y) any non-zero pdf on \Re .
- Draw y from q(q).
- If $y \leq r$ choose tested system.
- If r < y choose equi-prob from untested.

§ Theorem:

If tested system chosen with equal prob. then $P_{\rm s}(q) > \frac{1}{3}$.

- 7 n Systems, m Tests
- **Hypothesized generalization to** n systems, m tests.

- § Multiple attributes.
- § Adaptive testing.
- § Best possible probability of success.

9 Final Thoughts

- § We began by asking the following questions. How good is:
 - Our knowledge?
 - Our knowledge about our knowledge?
 - Our intuition about our ignorance?
 - Our ability to use knowledge and manage ignorance?
- § We began by asking the following questions. How good is:
 - Our knowledge?
 - Our knowledge about our knowledge?
 - Our intuition about our ignorance?
 - Our ability to use knowledge and manage ignorance?
- § The 2-system 1-test example showed that:
 - We are sometimes wrong about the answers.
 - We should be ready for surprises.

§ A final thought on Optimism:

• Scientific optimism: We're approaching the truth.

75/74

- § A final thought on Optimism:
 - Scientific optimism: We're approaching the truth.
 - My optimism:
 - We will always be surprised.
 - Science will always continue.
 - Uncertainty will never disappear.