Back to the Promised Land (Mathematical Analysis)

Yakov Ben-Haim
 Technion

Israel Institute of Technology

[^0]Back to the Promised Land (Mathematical Analysis)promised-land01.tex
Contents
1 Highlights (promised-land01.tex) 3
2 Two Systems, One Test (two-systems02.tex) 14
3 Two Systems, One Test, CDF Known (two-systems02.tex) 27
4 Robustness of Two Systems, One Test (two-systems02.tex) 31
5 Three Systems, Two Tests (two-systems02.tex) 55
6 Three Systems, One Test (two-systems02.tex) 62
$7 \quad n$ Systems, m Tests (two-systems02.tex) 69
8 Extensions (promised-land01.tex) 70
9 Final Thoughts 71

1 Highlights

\S Binary decisions, expensive tests:

- Airplane designs: Lockheed or Raytheon?
§ Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
- Energy supply: Nuclear or fossil?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
- Energy supply: Nuclear or fossil?
§ How good is:
- Our knowledge?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
- Energy supply: Nuclear or fossil?
§ How good is:
- Our knowledge?
- Our knowledge about our knowledge?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
- Energy supply: Nuclear or fossil?
§ How good is:
- Our knowledge?
- Our knowledge about our knowledge?
- Our intuition about our ignorance?
\S Binary decisions, expensive tests:
- Airplane designs: Lockheed or Raytheon?
- Pollution control: Tax or cap-and-trade?
- Medical intervention: Surgery or pharmaceuticals?
- Military budget: Tanks or intelligence?
- Energy supply: Nuclear or fossil?
§ How good is:
- Our knowledge?
- Our knowledge about our knowledge?
- Our intuition about our ignorance?
- Our ability to use knowledge and manage ignorance?

Highlights
§ 2 Systems, 1 Test: Probabilistic Alg.
§ Info-gap uncertainty on pdf: Robustify.
§ n Systems, m Tests.
§ Source: http://info-gap.com

2 Two Systems, One Test

[^1] the price of one: Info-gap robustness of the 1-test algorithm, ISIPTA2011, 25-28 July 2011, Innsbruck, Austria.
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.

- Choose one system.
- Bigger is better.
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.
- Choose one system.
- Bigger is better.
\S No prior knowledge?
- Flip a fair coin.
- 50/50 chance of success.
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.
- Choose one system.
- Bigger is better.
\S No prior knowledge?
- Flip a fair coin.
- 50/50 chance of success.
\S One system tested: quality x_{r}.
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.
- Choose one system.
- Bigger is better.
\S No prior knowledge?
- Flip a fair coin.
- 50/50 chance of success.
\S One system tested: quality x_{r}.
- Enhanced chance of success?
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.
- Choose one system.
- Bigger is better.
§ No prior knowledge?
- Flip a fair coin.
- 50/50 chance of success.
§ One system tested: quality x_{r}.
- Enhanced chance of success?
- Which system to use?
\S Two systems, with qualities $x_{1} \neq x_{2} \in \Re$.
- Choose one system.
- Bigger is better.
§ No prior knowledge?
- Flip a fair coin.
- 50/50 chance of success.
\S One system tested: quality x_{r}.
- Enhanced chance of success?
- Which system to use?
- It looks like 1 measurement can't help.

§ Algorithm for choosing a system:

- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
§ Algorithm for choosing a system:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
§ Algorithm for choosing a system:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
§ Algorithm for choosing a system:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
§ Algorithm for choosing a system:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
\S Probability of success, $P_{\mathrm{s}}(q)$:
Probability of choosing larger x_{i}.
§ Algorithm for choosing a system:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
§ Probability of success, $P_{\mathrm{s}}(q)$:
Probability of choosing larger x_{i}.
§ Theorem (Thomas Cover, 1987): ${ }^{1}$
If tested system chosen with probability 0.5 , then $P_{\mathrm{s}}(q)>0.5$.

[^2]3 Two Systems, One Test, CDF Known
$\S F(x)$ is known cdf. §
$\S F(x)$ is known cdf.
§ Algorithm for choosing a system:

- If $F\left(x_{\mathrm{r}}\right)<\frac{1}{2}$, choose un-tested system.
- If $F\left(x_{\mathrm{r}}\right) \geq \frac{1}{2}$, choose tested system.
$\S F(x)$ is known cdf.
§ Algorithm for choosing a system:
- If $F\left(x_{\mathrm{r}}\right)<\frac{1}{2}$, choose un-tested system.
- If $F\left(x_{\mathrm{r}}\right) \geq \frac{1}{2}$, choose tested system.
\S Theorem: $P_{\mathrm{s}}=\frac{3}{4}$
Proof: Robert R. Snapp, 2005. ${ }^{2}$

[^3]4 Robustness of Two Systems, One Test
§ Recall no-knowledge algorithm:

- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
§ Recall no-knowledge algorithm:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
\S Cover's Theorem: $P_{\mathrm{s}}(q)>0.5$.
§ Recall no-knowledge algorithm:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
§ Cover's Theorem: $P_{\mathrm{s}}(q)>0.5$.
§ How to choose $q(y)$?
Can we beat $P_{\mathrm{s}}(q)>0.5$?
§ Recall no-knowledge algorithm:
- $q(y)$ is any pdf: $q(y)>0$ for all $y \in \Re$.
- Draw y from $q(y)$.
- If $y \geq x_{\mathrm{r}}$ then choose un-tested system.
- If $y<x_{\mathrm{r}}$ then choose tested system.
\S Cover's Theorem: $P_{\mathrm{S}}(q)>0.5$.
§ How to choose $q(y)$?
Can we beat $P_{\mathrm{s}}(q)>0.5$?
\S If we know $p\left(x_{i}\right)$ then $P_{\mathrm{s}}=0.75$.
Can we achieve $P_{\mathrm{S}}(q)=0.75 \mathrm{w} / \mathrm{o}$ knowing $p\left(x_{i}\right)$?

§ Info-gap robust-satisficing:

- Our guess: $x \sim \widetilde{p}(x)$.

§ Info-gap robust-satisficing:

- Our guess: $x \sim \widetilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.
§ Info-gap robust-satisficing:
- Our guess: $x \sim \widetilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.
- Choose $q(y)$ to robust satisfice:
- Satisfy $P_{\mathrm{s}} \geq P_{\mathrm{c}}$.
\circ
§ Info-gap robust-satisficing:
- Our guess: $x \sim \widetilde{p}(x)$.
- $\widetilde{p}(x)$ highly uncertain.
- Choose $q(y)$ to robust satisfice:
- Satisfy $P_{\mathrm{s}} \geq P_{\mathrm{c}}$.
- Maximize robustness to uncertain \widetilde{p}.
\S Info-gap model for uncertain $\widetilde{p}(x): \mathcal{U}(h)$.
- Nesting: $h<h^{\prime} \Longrightarrow \mathcal{U}(h) \subseteq \mathcal{U}\left(h^{\prime}\right)$.
\S Info-gap model for uncertain $\widetilde{p}(x): \mathcal{U}(h)$.
- Nesting: $h<h^{\prime} \Longrightarrow \mathcal{U}(h) \subseteq \mathcal{U}\left(h^{\prime}\right)$.
- Contraction: $\mathcal{U}(0)=\{\widetilde{p}\}$.
\S Info-gap model for uncertain $\widetilde{p}(x): \mathcal{U}(h)$.
- Nesting: $h<h^{\prime} \Longrightarrow \mathcal{U}(h) \subseteq \mathcal{U}\left(h^{\prime}\right)$.
- Contraction: $\mathcal{U}(0)=\{\widetilde{p}\}$.
- h is unbounded horizon of uncertainty.
§ Robustness, $\widehat{h}\left(q, P_{\mathrm{c}}\right)$:
Maximum tolerable uncertainty.

$$
\widehat{h}\left(q, P_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{p \in \mathcal{U}(h)} P_{\mathrm{s}}(q \mid p)\right) \geq P_{\mathrm{c}}\right\}
$$

§ Example:

- Estimated pdf: $\widetilde{p}(x)=\widetilde{\lambda} \mathrm{e}^{-\lambda x}$.

§ Example:

- Estimated pdf: $\widetilde{p}(x)=\widetilde{\lambda} \mathrm{e}^{-\tilde{\lambda} x}$.
- Decision pdf: $q(y)=\gamma \mathrm{e}^{-\gamma y}$. Need to choose γ.

§ Example:

- Estimated pdf: $\widetilde{p}(x)=\widetilde{\lambda} \mathrm{e}^{-\tilde{\lambda} x}$.
- Decision pdf: $q(y)=\gamma \mathrm{e}^{-\gamma y}$. Need to choose γ.
- Prob of success: $P_{\mathrm{s}}(q \mid \widetilde{p})>0.5$

§ Example:

- Estimated pdf: $\widetilde{p}(x)=\widetilde{\lambda} \mathrm{e}^{-\tilde{\lambda} x}$.
- Decision pdf: $q(y)=\gamma \mathrm{e}^{-\gamma y}$. Need to choose γ.
- Prob of success: $P_{\mathrm{s}}(q \mid \widetilde{p})>0.5$
- Putative optimal choice:

$$
\begin{aligned}
\gamma^{\star} & =\arg \max _{\gamma} P_{\mathrm{s}}(q \mid \widetilde{p}) \\
& =\widetilde{\lambda} \sqrt{2}
\end{aligned}
$$

- E.g., $\widetilde{\lambda}=1: P_{\mathrm{s}}(q \mid \widetilde{p})=0.67 \gg 0.5$

§ Example:

- Estimated pdf: $\widetilde{p}(x)=\widetilde{\lambda} \mathrm{e}^{-\tilde{\lambda} x}$.
- Decision pdf: $q(y)=\gamma \mathrm{e}^{-\gamma y}$. Need to choose γ.
- Prob of success: $P_{\mathrm{s}}(q \mid \widetilde{p})>0.5$
- Putative optimal choice:

$$
\begin{aligned}
\gamma^{\star} & =\arg \max _{\gamma} P_{\mathrm{s}}(q \mid \tilde{p}) \\
& =\tilde{\lambda} \sqrt{2}
\end{aligned}
$$

- E.g., $\widetilde{\lambda}=1: P_{\mathrm{s}}(q \mid \widetilde{p})=0.67 \gg 0.5$
- Robust to uncertainty in $\widetilde{p}(x)$???

Figure 1: Robustness curves with $\widetilde{\lambda}=1$.

§ Zeroing:

Estimated prob of success: no robustness.
§

Figure 2: Robustness curves with $\widetilde{\lambda}=1$.

§ Zeroing:

Estimated prob of success: no robustness.
§ Trade off: robustness vs prob. of success.

Figure 3: Robustness curves with $\tilde{\lambda}=1$.
Figure 4: Robustness curves with $\widetilde{\lambda}=1$.

§ Preference reversal.

Figure 5: Robustness curves with $\widetilde{\lambda}=1$.

§ Zeroing: no robustness of estimate.

Figure 6: Robustness curves with $\widetilde{\lambda}=1$.
§ Zeroing: no robustness of estimate.
§ Trade off: robustness vs prob. of success.
§

Figure 7: Robustness curves with $\tilde{\lambda}=1$.
§ Zeroing: no robustness of estimate.
\S Trade off: robustness vs prob. of success.
§ Preference reversal.

- $\gamma=\sqrt{2} \quad$ more robust for $P_{\mathrm{c}}>0.62$.
- $\gamma=1 / \sqrt{2}$ more robust for $P_{\mathrm{c}}<0.62$.

§ 3 Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

$\S 3$ Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test two systems with revealed attributes:

$$
r_{1}<r_{2}
$$

§
$\S 3$ Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test two systems with revealed attributes:

$$
r_{1}<r_{2}
$$

\S Goal: Exclude worst system.
§
§ 3 Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test two systems with revealed attributes:

$$
r_{1}<r_{2}
$$

\S Goal: Exclude worst system.
\S Blind probability of success: $\frac{1}{3}$

§ Algorithm:

- $q(y)$ any non-zero pdf on \Re.
- Draw y from $q(q)$.
- If $y<r_{1}$ choose 2 tested systems.
- If $r_{1} \leq y$ choose r_{2} and untested system.

§ Algorithm:

- $q(y)$ any non-zero pdf on \Re.
- Draw y from $q(q)$.
- If $y<r_{1}$ choose 2 tested systems.
- If $r_{1} \leq y$ choose r_{2} and untested system.

§ Theorem:

If tested systems chosen with equal prob. then $P_{\mathrm{s}}(q)>\frac{1}{3}$.

6 Three Systems, One Test

§ 3 Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

$\S 3$ Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test one system with revealed attribute r.
$\S 3$ Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test one system with revealed attribute r.
§ Goal: Select best system.
§
§ 3 Systems with qualities:

$$
x_{1}<x_{2}<x_{3}
$$

\S Test one system with revealed attribute r.
§ Goal: Select best system.
\S Blind probability of success: $\frac{1}{3}$

§ Algorithm:

- $q(y)$ any non-zero pdf on \Re.
- Draw y from $q(q)$.
- If $y \leq r$ choose tested system.
- If $r<y$ choose equi-prob from untested.

§ Algorithm:

- $q(y)$ any non-zero pdf on \Re.
- Draw y from $q(q)$.
- If $y \leq r$ choose tested system.
- If $r<y$ choose equi-prob from untested.

§ Theorem:

If tested system chosen with equal prob. then $P_{\mathrm{s}}(q)>\frac{1}{3}$.

7 n Systems, m Tests
§ Hypothesized generalization to n systems, m tests.

8 Extensions
\S Multiple attributes.
§ Adaptive testing.
§ Best possible probability of success.

9 Final Thoughts
\S We began by asking the following questions.
How good is:

- Our knowledge?
- Our knowledge about our knowledge?
- Our intuition about our ignorance?
- Our ability to use knowledge and manage ignorance?
\S We began by asking the following questions. How good is:
- Our knowledge?
- Our knowledge about our knowledge?
- Our intuition about our ignorance?
- Our ability to use knowledge and manage ignorance?
\S The 2-system 1-test example showed that:
- We are sometimes wrong about the answers.
- We should be ready for surprises.

§ A final thought on Optimism:

- Scientific optimism: We're approaching the truth.
§ A final thought on Optimism:
- Scientific optimism: We're approaching the truth.
- My optimism:
- We will always be surprised.
- Science will always continue.
- Uncertainty will never disappear.

[^0]: ${ }^{0} \backslash$ lectures \backslash talks \backslash lib \backslash promised-land01.tex $\quad 20.1 .2016$

[^1]:

[^2]: ${ }^{1}$ Cover, Thomas M., 1987, Pick the largest number, chapter 5.1 in T. Cover and B. Gopinath, 1987, Open Problems in Communication and Computation, Springer-Verlag, Berlin.

[^3]: ${ }^{2}$ Robert R. Snapp, 2005, U of Vermont, \papers $\backslash 2$-systems-1test \backslash isipta2011 \backslash covers-problem.pdf

