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Abstract Voting algorithms are used to choose candidates by an electorate. However, voter
participation is variable and uncertain, and projections from polls or past elections are uncertain be-
cause voter preferences may change. Furthermore, electoral victory margins are often slim. Variable
voter participation or preferences, and slim margins of decision, have implications for choosing a
voting algorithm. We focus on approval voting (AV) and compare it to plurality voting (PV), regard-
ing their robustness to uncertainty in voting outcomes. We ask: by how much can voting outcomes
change without altering the election outcomes? We see fairly consistent empirical differences be-
tween AV and PV. In single-winner elections, PV tends to be more robust to vote uncertainty than
AV in races with large victory margins, while AV tends to be more robust at low victory margins.
Two conflicting concepts — approval flattening and approval magnification — explain this ten-
dency for reversal of robust dominance between PV and AV. We also examine the robustness to vote
uncertainty of PV in elections for proportional representation of parties.

1 Introduction

Voting algorithms in democracies are used to choose candidates, legislators, and executive officers
by an electorate. However, the extent of participation in elections by voters may vary widely and
can be highly uncertain. Projections from polls or past elections to future elections are uncertain
due to the potential for voters to change their preferences. Furthermore, the margins by which
electoral decisions are made are often slim. Variable voter participation or preferences, together
with slim margins of decision, have important implications for the choice of an electoral voting
algorithm. We focus on approval voting and compare it to plurality voting, with respect to their
robustness to uncertainty in voting outcomes. The central question we address is: by how much
can voting outcomes change without altering the election outcomes? We will see important and
fairly consistent empirical differences between approval voting and plurality voting.

Voter turnout varies greatly between countries, from less than 50% in Switzerland and other
countries, to over 90% in Australia and elsewhere (Stockemer, 2017). However, the variability in
turnout for parliamentary elections also sometimes varies substantially over time in the same coun-
try, displaying both trends and fluctuations. The percentage of the voter-age population (VAP) that
turned out for parliamentary elections in France changed from 71% to 61% and back to 71% in 1958,
1962 and 1967, respectively. The extent of VAP participation of the Israeli electorate in elections of
Knesset (parliament) members reached a high of 86.9% (in 1949), drifted from 82.8% (in 1955) to
78.8% (in 1999), reached a low of 63.5% (in 2006), and rose to 72.3% in 2015 (Knesset, 2019; Atmor
and Friedberg, 2015). VAP turnouts in The Netherlands were 88%, 92% and 78% in 1963, 1967, and
1971. VAP turnouts in the United Kingdom were 75%, 69% and 58% in 1992, 1997 and 2001. VAP
turnouts in Japan were 66%, 45% and 60% in 1993, 1995 and 1996. VAP turnouts in Taiwan were
57%, 74%, 66% and 74% in 2008, 2012, 2016 and 2020. More examples abound around the world,
especially in countries subject to more chaotic conditions (Institute for Democracy and Electoral As-
sistance). Turnout in elections for the European Parliament also display wide variability between
countries (Blondel, Sinnott and Svensson, 1997, 243)

Voter attitudes can have a major impact on voter turnout, and in surveys conducted in relation to
elections for the European Parliament, “the main reason given for abstention is lack of interest; . . . .
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Three other reasons are fairly frequently given: political distrust or dissatisfaction, lack of knowl-
edge and dissatisfaction with the electoral system.” (Blondel, Sinnott and Svensson, 1997, 265–266).
In a game-theoretic analysis, Palfrey and Rosenthal (1985, 62) concluded that the extent of voter
participation can be strongly influenced by the degree of uncertainty about preferences and costs.
Voters are also motivated to vote, or not, depending on a sense of civic duty or ethical obligation
(Feddersen and Sandroni, 2006, 1271). Voter participation is influenced by spending by candidates,
voters’ socio-economic status, and the electoral margin by which an outcome is obtained (Hogan,
1999, 403, 405; Mueller and Stratmann, 2003, 2129; Silberman and Durden, 1975, 107). However,
the evidence for influence of electoral margin on voter participation in Canadian Federal elections
is “mixed” according to Endersby, Galatas and Rackaway (2002, 610). Levine and Palfrey (2007,
143) report that voter turnout goes down in large electorates, and goes up among voters support-
ing less popular alternatives. These numerous factors are all inter-related and uncertain, especially
perceptions of status, knowledge and interest, and anticipations of outcomes.

Popular vote margins are often slim. The margin of victory in popular votes in many U.S. Pres-
idential elections is often small: 0.17% for Kennedy in 1960, 0.70% for Nixon in 1968, −0.51% for
George W. Bush in 2000 (Bush won in the electoral college by 0.37%).

Diverse algorithms are available for popular elections. Plurality or majority are the most com-
mon, but other algorithms have been proposed.

In 1770 Jean-Charles de Borda “proposed ‘election by order of merit,’ now known as Borda’s
rule. Under this method, each voter ranks the candidates in order, and each candidate is awarded
a number of votes (from that voter) equal to the number of other candidates ranked below him; the
candidate receiving the greatest total number of votes wins the election.” (Weber, 1995, 39).

In the 1970s Weber proposed an election algorithm called approval voting (AV) whereby “each
voter is allowed to cast a single vote for each of as many candidates as he or she wishes—that is, the
voter votes for all candidates of whom the voter ‘approves.’ The candidate receiving the greatest
total number of votes is declared the winner.” (ibid, 40). A modification of approval voting limits the
number of approvals that each voter can allot. Ordinary plurality voting results when this approval
limit equals one. Brams and Fishburn (1978) and Brams (2008) discuss advantages of AV, and Niemi
(1984) raises some substantial objections.

Tabarrok (2001, p.284) notes that pre-election polls may differ from final election results because
“some voters changed their minds by the time of the election” and considers the robustness of
results to plausible changes in outcomes. We will study in depth the robustness of approval voting
to uncertainty in vote outcomes.

Dehez and Ginsburgh (2019, p.13) write that “Approval voting has its advantages and draw-
backs like any other preference aggregation method, although most of its advantages cannot be
formalized.” They note that a challenge in assessing AV is that it depends on the strength of voters’
preferences which are uncertain. This uncertainty in voter preferences is related to uncertainty in
voting outcomes.

In short, electoral voting entails many deep uncertainties. This motivates our focus in this paper
on how voting algorithms perform under uncertainty. We focus specifically on approval voting (AV)
and compare it with conventional plurality voting (PV) in single-winner elections. In section 2 we
formulate the info-gap representation of uncertainty in AV outcomes. In section 3 we develop the
robustness to uncertain AV outcomes with a single winner, and in section 4 we do the same for PV.
We discuss an empirical example in section 5. In section 6 we briefly examine the robustness of PV
in an election whose outcome determines the proportional representations of a number of parties.
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Section 7 concludes.

2 Info-Gap Representation of Uncertainty in Approval Votes

Our analysis is based on a non-probabilistic representation of uncertainty, and the concept of ro-
bustness, as developed in info-gap decision theory. An intuitive and non-technical discussion of
info-gap theory appears in Ben-Haim (2018); mathematical development of the methodology is pre-
sented in Ben-Haim (2006, 2010). Many citations appear on the website info-gap.com.

As explained in section 1, approval voting is an election algorithm in which each voter may
cast a single vote for each of as many candidates as the voter wishes. The winner is the candidate
who received the greatest number of such “approvals”. In this section we develop an info-gap
representation for the uncertainty in these approval votes.

The number of candidates is N, which is greater than 2, and the total number of participat-
ing voters is T. The results of a specific AV election yielded ãn approvals for candidate n, for
n = 1, . . . , N, which we denote with the vector ã. The candidate with the greatest number of
approvals won. However, we want to know if this result is robust to uncertainty in the voting. We
now formulate the non-probabilistic info-gap representation of uncertainty. In the next section we
formulate the robustness to uncertainty.

As explained in section 1, many factors impact voter participation and preferences. As a con-
sequence, the AV results that are actually observed could have been quite different, so we face
deep uncertainty about the vote outcome. That is, the observed AV results, denoted by the vector
ã = (ã1, . . . , ãN), could have been different as denoted by a vector a = (a1, . . . , aN). We have no re-
liable probabilistic information about this uncertainty of the observed outcome, so we now develop
a non-probabilistic info-gap representation of this uncertainty.

We suppose that, for each outcome ãi, we have a rough estimate of its potential variation repre-
sented by a positive uncertainty weight wi. Thus the approval votes for candidate i could vary by
±wi or more, but cannot be negative or greater than the number of participating voters (we treat
elements of a as non-negative real numbers for simplicity, though in fact they must be integers). We
represent this uncertainty with the following fractional-error info-gap model:

U (h) =
{

a : 0 ≤ an ≤ T,
∣∣∣∣ an − ãn

wn

∣∣∣∣ ≤ h, n = 1, . . . , N
}

, h ≥ 0 (1)

U (h) is the set of all allowed values of AV outcome vectors, a, that deviate fractionally from the
observed vector, ã, by no more than h. The set becomes more inclusive as h grows, so h is called the
horizon of uncertainty. The info-gap model of uncertainty is not a single set, but rather the family
of nested sets U (h) for h ≥ 0. The info-gap model represents the uncertainty non-probabilistically
due to the limited available information. Furthermore, there is no known worst case.

There are many types of info-gap models of uncertainty, of which eq.(1) is the most relevant for
the present situation, but they all obey the contraction and nesting axioms (Ben-Haim, 2006, 2010).

The contraction axiom asserts that, in the absence of uncertainty, the votes take the observed
values ã. Formally:

U (0) = {ã} (2)

The nesting axiom asserts that the sets become more inclusive as the parameter h increases:

h < h′ =⇒ U (h) ⊆ U (h′) (3)

4



3 Robustness of Approval Voting with a Single Winner

The condition for candidate i to beat candidate j by a non-negative margin δ is:

ai − aj > δ (4)

The significance of the victory margin, δ, will become evident after we derive the robustness func-
tion.

Regarding the competition between candidates i and j, the robustness to uncertainty in the ap-
proval votes is the greatest horizon of uncertainty, h, up to which all voting outcomes a in the
uncertainty set U (h) of eq.(1) satisfy the requirement in eq.(4):

ĥij(δ) = max
{

h :
(

min
a∈U (h)

(
ai − aj

))
> δ

}
(5)

We are considering situations in which one candidate beats the other. Let i denote the putatively
winning candidate, so ãi > ãj.

The following expression for the robustness function is derived in appendix A:

ĥij(δ) =
ãi − ãj − δ

wi + wj
(6)

or zero if this is negative, where δ ≥ 0.
Eq.(6) asserts that the robustness to uncertainty increases as the observed margin of victory,

ãi − ãj, increases, and decreases as the total uncertainty weight, wi + wj, increases.
Like all info-gap robustness functions, ĥij(δ) in eq.(6) displays the trade off and zeroing prop-

erties, and which will be seen in the examples in sections 5 and 6. The original question was: how
much can the AV results change without altering the outcome? The zeroing property asserts that
we have no robustness to uncertainty if we require the observed margin of victory. This means that
the observed margin of victory is not a reliable measure of voter preference for the winner, due to
deep uncertainty in voting outcomes.

The trade off property asserts that only lower margins of victory have positive robustness to
uncertainty in voting outcomes. That is, the robustness, ĥij(δ), increases (which is desirable) as the
required victory margin, δ, decreases (which is undesirable). The robustness function thus supports
the choice of a reliable margin of victory: a value of δ for which the corresponding robustness is
large. Note, however, that the robustness in eq.(6) cannot exceed the ratio of the observed margin
of victory, ãi − ãj, to the sum of the uncertainty weights, wi + wj. Thus the maximal robustness will
be much less than one in a close race with large uncertainty weights. This is especially acute when
the uncertainty weights, wi and wj, are estimated as the vote counts themselves, ãi and ãj. In other
words, large robustness and high confidence in outcomes will not be possible in all situations.

We are considering approval voting in multi-candidate elections with a single winner. However,
while only a single candidate actually wins the election, other races within the multi-candidate
election may be significant. For instance, a single candidate will win a multi-candidate primary
election, but losing candidates may still run in later primary elections or may claim positions or
privileges in subsequent political developments. The confidence one has that margins of victory
among these losing candidates will recur is relevant to these circumstances. For instance, a losing
candidate whose robustness of loss is large may withdraw, but not if the robustness is small. In the
latter case — small robustness for loss — the loser may reason that small changes in voter behavior
in the next round could yield victory.
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4 Robustness of Plurality Voting with a Single Winner

We now formulate the robustness function for plurality voting, and in section 5 we compare it with
approval voting with various real election results.

The number of candidates is N and the total number of voters is T, where each voter can vote
for no more than 1 candidate. In analogy to eq.(1), the info-gap model for uncertainty in the voting
outcomes is:

U (h) =
{

a : 0 ≤ an,
N

∑
n=1

an ≤ T,
∣∣∣∣ an − ãn

wn

∣∣∣∣ ≤ h, n = 1, . . . , N

}
, h ≥ 0 (7)

Consider a race where candidate i beats candidate j in the official outcome, that is ãi > ãj. The
definition of the robustness of this outcome is eq.(5) where we now use the info-gap model in eq.(7).
In appendix B we derive the robustness function for the special case that the uncertainty weights
are proportional to the observed votes:

w = γã (8)

for some γ > 0. The result is:

ĥij(δ) =
ãi − ãj − δ

(ãi + ãj)γ
(9)

or zero if this is negative. Note that eq.(8) implies that this is algebraically the same as eq.(6), the
robustness for approval voting, though different constraints apply to the voting outcomes.

5 Comparing Approval and Plurality Voting with a Single Winner

In this section we compare the robustness to vote uncertainty of approval and plurality voting,
by analyzing actual outcomes in several different single-winner elections. We adopt the condition
in eq.(8) for the uncertainty weights of both AV and PV, so the approval and plurality robustness
functions, eqs.(6) and (9), are algebraically the same though they apply to different outcome vectors.
We choose γ = 1 so the uncertainty weights are the voting outcomes. We will see that PV tends to
be more robust to vote uncertainty than AV in races with large margins of victory, while AV tends
to be more robust at low margins of victory. We will suggest two competing concepts — approval
flattening and approval magnification — to explain this tendency for a reversal of robust dominance
between PV and AV.

5.1 A First Look at Some Evidence

Fishburn and Little (1988) discuss results of 3 elections in The Institute of Management Sciences
(TIMS) in which participants returned both plurality and approval voting ballots. Results of 2 of
these elections are reproduced here in table 1.

Candidate First Election Second Election
Plurality Approval Plurality Approval

A 166 417 386 558
B 827 1038 551 713
C 835 908 599 768

Table 1: Results of two TIMS elections, from Fishburn and Little (1988).
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Figure 1: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates A
and B in election 1.

Figure 2: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates A
and C in election 1.

Figure 3: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates B
and C in election 1.
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Figure 4: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates A
and B in election 2.

Figure 5: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates A
and C in election 2.

Figure 6: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates B
and C in election 2.

Figs. 1–3 show robustness curves for the first TIMS election, based on eqs.(6), (8) and (9) with
γ = 1. Note that the vertical and horizontal scales are not the same in all figures, due to the widely
different range of values. Two features are particularly prominent. First, plurality voting (PV) is
more robust than approval voting (AV) in the races of candidates A against B, and A against C, but
not for B against C. Second, the B-C race has much smaller margin of victory and hence much lower
robustness than the other two races. Recall also that the PV and AV outcomes are different in the
B-C race of election 1: B wins according to AV, while C wins according to PV. The other outcomes of
election 1 are the same according to AV and PV.

A similar picture emerges from figs. 4–6 for election 2 (note again the different scales in the
figures). PV is more robust than AV in the large-margin races: A vs B and A vs C. In contrast, and
like fig. 3, PV and AV both have low robustness in the B vs C race where the margin of victory is
low. In fact, in the B vs C race the robustness curves are close and even cross one another. AV and
PV agree on all three outcomes in election 2.

What do the robustness numbers mean? This will lead us to the ideas of zeroing and trade off.
The zeroing property asserts that observed voting outcomes have no robustness against uncertainty.
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The trade off property is that the robustness, ĥij(δ), goes down (gets worse) as the critical value,
δ, increases (gets more demanding). This is demonstrated by the negative slopes of the robustness
curves.

Take, for example, the B vs C race in the first TIMS election, fig. 3. From table 1 we see that
candidate C beat B by 8 votes in the PV election, but B beat C by 130 votes in the AV election.
The robustness to voter uncertainty is precisely zero for both of these outcomes (this is the zeroing
property). Only lower margins of victory have positive robustness, as expressed by the negative
slopes of the robustness curves (the trade off property). For instance, looking again at fig. 3, C beats
B by 5 votes with robustness of 0.064 in the AV election, but B beats C by 5 votes with robustness of
only 0.0018 in the PV election. This means that the observed outcomes could vary by ±6.4% in an
AV election and C would still beat B by no less than 5 votes. In contrast, PV outcomes could vary by
only ±0.18% in a PV election and B would still beat C by no less than 5 votes. While robustness to
6.4% variation in voting outcomes is not large, it is greater than 0.18%. This means that we would
have more confidence in the AV outcome (victory for C) than in the PV outcome (victory for B),
though neither outcome is highly robust to voting uncertainty.

We now examine these results more closely by introducing two concepts: approval flattening in
section 5.2, and approval magnification in section 5.3.

5.2 Robust Dominance of PV at Large Margins of Victory: Approval Flattening

The robust dominance of plurality voting over approval voting, when the margin of victory is sub-
stantial, suggests the phenomenon of ‘approval flattening’, by which we mean that AV outcomes
are less decisive in two senses.

First, approval flattening means that the AV margin of victory decreases compared to PV. Brams
and Nagel (1991, p.14) wrote that “Generally speaking, AV will result in relatively higher vote totals
for ‘underdog’ candidates, [because] . . . under AV, voters need not worry about ‘wasting’ their
votes if they want to support someone thought to have little or no chance of winning.” Vote totals
are larger, and victory margins may tend to be smaller, in AV elections.

The second aspect of approval flattening is that the ratio of the margin of victory to the total vote
count decreases compared to PV. These two aspects of approval flattening are reflected in reduced
robustness of approval voting to vote-count uncertainty, as will be explained shortly.

Approval flattening does not necessarily occur, in particular due to the phenomenon of approval
magnification to be discussed in section 5.3. However, one might expect that approval flattening will
tend to occur because voters can express approval for additional candidates in approval voting, for
whom they cannot express approval in plurality voting.

Approval flattening is manifested in two aspects of the robustness curves in figs. 1, 2, 4 and 5.
From eqs.(6) and (9) we see that the horizontal intercept of each robustness curve is the observed
margin of victory, ãi − ãj. This margin is smaller in each of these four AV races than in the corre-
sponding PV races. The vertical intercept of each robustness curve is (ãi − ãj)/(ãi + ãj). This ratio
is also lower for each of the four AV races. Approval flattening thus shifts the AV robustness curve
to the left and downward with respect to the PV robustness curve, which is precisely what we see
in figs. 1, 2, 4 and 5.

While approval voting has normative attributes in its favor, as explained by Brams and others, it
often displays lower robustness to uncertainty in voter turnout due to approval flattening, as seen
in figs. 1, 2, 4 and 5. However, we have yet to explain the contrary results of figs. 3 and 6, which
depend on the phenomenon of approval magnification.
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5.3 Robust Dominance of AV at Low Margins of Victory: Approval Magnification

Fishburn and Little (1988) consider a third TIMS election between 5 candidates in which the plural-
ity votes determine two positions to be filled. The PV and AV results are reproduced in table 2.

Candidate Third Election
Plurality Approval

A 679 669
B 937 956
C 651 715
D 670 685
E 391 483

Table 2: Results of the third TIMS election, from Fishburn and Little (1988).
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Figure 7: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates A
vs B, C, D and E in election 3.

Figure 8: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates B
vs C, D and E in election 3.

Figure 9: Robustness func-
tions for approval voting
(solid) and plurality voting
(dash) between candidates C
vs D and E, and D vs E in
election 3.

Fig. 7 shows robustness curves for 4 races in the third TIMS election studied by Fishburn and
Little (1988): candidate A vs candidates B, C, D and E. Note again the different scales in the figures.
These robustness curves mostly show the pattern seen earlier: AV is robust dominant over PV when
the observed margin of victory is low (A-C and A-D), but PV is robust dominant when the margin
of victory is large (A-E); the A-B race deviates from the pattern because AV is slightly more robust
than PV at large margin of victory.

Fig. 8 shows a similar pattern in two of the three races, and fig. 9 shows this pattern in all three
races.

The pattern that is emerging is that AV robustness to uncertain voter turn out is lower than PV
robustness when the margin of victory is large; at low margin of victory AV tends to be more robust
than PV. Equivalently, both AV and PV robustnesses are low in highly contested races, and in these
races AV tends to be more robust than PV.

In the Fishburn and Little (1988) election data, it is the low-margin races that determine the final
outcome, except for the first-position race in election 3 which is won by a large margin. The B vs C
race is close in elections 1 and 2; and the race for 2nd position in election 3 is close: A vs D in the
PV race and C vs D in the AV race. AV is substantially more robust than PV in 3 of these 4 close
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elections, but not in the B vs C race in election 2, where the robustness curves cross.
Two competing factors explain these results: approval flattening and approval magnification.

The former tends to reduce margins of victory in an AV election because electors can vote for more
than one candidate, as explained in section 5.2. Approval magnification is the phenomenon of
greater total vote counts in approval voting, which also results because electors can vote for more
than one candidate in AV elections. Approval magnification tends to magnify the differences be-
tween the candidates. Approval magnification tends to enlarge margins of victory in an AV election
because more votes are cast in an AV election, thus amplifying disparities between candidates. Ap-
proval flattening and approval magnification are conflicting phenomena.

In a close race the margins are small and there is not much room for approval flattening, at least
among the leading candidates. This is precisely what we have seen in the data presented earlier
in this section. Thus in a close race approval magnification is dominant and the margins of victory
in an AV election tend to be larger than in a PV election. This tends to cause larger robustness for
AV than for PV in close elections. In contrast, large margins of victory have room for approval
flattening, which causes the margins of victory in a PV election to exceed those of an AV election, as
we have seen earlier in this section. And this results in larger robustness for PV than for AV in races
that are not close.

These two competing factors — approval flattening and approval magnification — explain the
tendency for robust dominance of AV in close races, and of PV in races with large margins of victory.
Furthermore, when AV is robust dominant, its robustness is low, while when PV is robust dominant
its robustness is large. We stress that this conclusion is an empirically observed tendency, not a
universal rule.

The significance of this tendency, to the extent that the tendency is realized, is to suggest a proce-
dural advantage for approval voting over plurality voting in close races. Robustness to uncertainty
in voter turn out is particularly important in close races. The tendency of AV to be more robust than
PV in close races is therefore a procedural advantage of AV. It is not a substantive advantage based
on principles of fairness or other normative issues. This is a different argument in support of AV
than presented by other scholars. We note, however, that the robustness of AV in close races is low,
suggesting that the procedural advantage of AV, while true as a tendency, is not particularly strong.

6 Proportional Representation: Robustness of Plurality Voting

In section 5 we discussed and compared the robustness to vote uncertainty of AV and PV in single-
winner elections. There are other electoral algorithms, and we now briefly consider the robustness
of PV elections leading to proportional representation, which is distinct from single-winner elec-
tions.

Rapoport, Felsenthal and Maoz (1988) discuss proportional representation of numerous parties
in a legislative body. They compare plurality voting and approval voting in exit polls after an
election of the Israeli General Federation of Labor (Histadrut), and note important differences in the
outcomes. We will consider only the PV results, shown here in table 3.

6.1 Robustness: Formulation

We now formulate the robustness function for PV in an election leading to proportional representa-
tion. In section 6.2 we will apply the analysis to the data in table 3.
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Party Plurality Voting
Number Proportion
of votes of votes

Labor 275 0.668
Herut-Liberal 86 0.209
Tehiya 11 0.027
Hadash 17 0.041
Citizen Rights 18 0.044
Progressive List 3 0.007
Shinui 2 0.005
Total 412 1.000

Table 3: Exit poll plurality-voting results for Histadrut elections, from Rapoport, Felsenthal and
Maoz (1988).

Let N represent the number of parties (N = 7 in table 3), and let ã = (ã1, . . . , ãN) denote the
number of observed votes for the various parties (column 2 in table 3). The outcomes could have
been different, as represented by a vector a. The uncertain deviation between ã and a is represented
by the info-gap model in eq.(7).

For any vector of voting outcomes, a, the proportion in the representative body that is assigned
to the nth party is:

fn =
an

∑N
j=1 aj

(10)

The performance requirement, from the perspective of the nth party, is that its proportion in the
representative body be no less than a fraction fc:

fn ≥ fc (11)

where fc is any non-negative value no greater than 1.
The robustness for the nth party to satisfy this requirement is the greatest horizon of uncertainty

in the voting outcomes up to which eq.(11) is satisfied for all outcome vectors a in the info-gap
model:

ĥn( fc) = max
{

h :
(

min
a∈U (h)

fn

)
≥ fc

}
(12)

The numerical evaluation of this robustness function is explained in appendix C when the uncer-
tainty weights satisfy eq.(8).

6.2 Robustness: Example

Figs. 10 and 11 show robustness curves, ĥn( fc) vs fc, for PV based on the data for the 7 parties in
table 3. These robustness curves all display the phenomena of zeroing and trade off that we have
seen in all previous examples.

Zeroing is the phenomenon that the robustness, ĥn( fc), equals zero if the required proportional
representation, fc, equals the observed value. For instance, consider the robustness curve in the
upper left frame in fig. 10. The curve reaches the horizontal axis (zero robustness) at the value
fc = 0.668 which is the observed PV outcome for Labor. Observed outcomes have zero robustness
to uncertainty in the voting results underlying those outcomes.
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Figure 10: Robustness func-
tions, ĥn( fc) vs fc, for plural-
ity voting. γ = 1.

Figure 11: Robustness func-
tions, ĥn( fc) vs fc, for plural-
ity voting. γ = 1.

Trade off is the phenomenon that robustness increases as the required outcome becomes less
demanding. This is expressed by the negative slopes of all the robustness curves, showing that
ĥn( fc) increases (which is desirable) as fc decreases (which is undesirable). For example, consider
again the upper left frame in fig. 10. The putative outcome for Labor is 66.8% but the robustness to
uncertainty is zero for this outcome. However, the robustness curve shows that Labor’s robustness
to uncertainty for 50% representation ( fc = 0.5) is 0.32. That is, voting outcomes could vary by as
much as ±32% and Labor would still obtain at least 50% proportional representation in a PV vote.

These conclusions demonstrate the methodology of info-gap robustness analysis and the irrevo-
cable properties of zeroing and trade off in a PV election with proportional representation if parties.

7 Conclusion

Approval voting and plurality voting have been examined by many scholars from various norma-
tive perspectives relating to political theory and elections. In this paper we take a different approach,
and examine the extent to which AV and PV are robust to uncertainty in voting outcomes. Robust-
ness to uncertainty may itself have normative implications for electoral theory, but that has not been
our concern here. Rather, we began by recognizing that voting outcomes can and do vary widely
and are often highly uncertain before voting actually occurs. We then asked the question: by how
much can voting outcomes change without altering the election outcomes? Whether large robust-
ness to electoral uncertainty is desirable or not has not been our concern. Rather, we have focussed
on characterizing when one voting algorithm, PV or AV, is robust dominant over the other.

In sections 3 to 5 we considered AV and PV elections between more than 2 candidates in which
a single candidate wins. We found two prevailing tendencies in the evidence examined, though no
irrevocable universal law.

The first tendency is that PV tends to be more robust to vote uncertainty than AV in races with
large margins of victory. We explain this tendency with the concept of approval flattening, which
refers to two ideas: margins of victory in single-winner elections tend to be lower in AV than in PV,
and the ratio of the margin of victory to the total vote count tends to be lower in AV than in PV. We
stress that margin of victory is different from robustness to uncertainty of that margin. The concept
of approval flattening connects the two concepts, and explains why PV tends to greater robustness
at large margins of victory.

The second tendency in single-winner elections is that AV tends to be more robust to vote uncer-
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tainty than PV at low margins of victory (just the reverse of the large-margin case). This is explained
by the concept of approval magnification, which is the phenomenon of greater total vote counts in
AV compared to PV. This tends to magnify the differences between the candidates in AV. Approval
magnification is different from approval flattening, and they reflect different and conflicting aspects
of the AV algorithm. Margins of victory are small in a close race and there is little room for approval
flattening among the leading candidates. Thus in a close race the magnification is dominant and the
margins of victory in an AV election are larger than in a PV election because there are more votes in
an AV election. This explains the tendency for larger robustness of AV than of PV in close elections.

In section 6 we briefly considered a different electoral setting: PV voting outcomes determine
the proportional representation of competing political parties. We demonstrated and discussed the
implications of the zeroing and trade off properties of all info-gap robustness functions.

This paper has employed info-gap decision theory and its analysis of robustness to uncertainty.
Info-gap is a strictly non-probabilistic theory for modeling and managing uncertainty. The choice
between info-gap and probabilistic analyses hinges on the available evidence. Probabilistic mod-
els of vote uncertainty are more informative than info-gap models of vote uncertainty. The analyst
should probably use probabilistic models if they are available and reliable. However, when infor-
mation is insufficient to reliably support probabilistic models, then info-gap analysis of robustness
to uncertainty provides a useful alternative, as demonstrated in this paper.

Robustness to uncertainty in voting outcomes has political and theoretical implications that
should be explored. One might view robustness to uncertainty as undesirable because it acts as
a conservative factor resisting change. Or, robustness to uncertainty might be seen as an anchor of
social preference against the vagaries of voter participation and preference. These and related issues
need exploration.

Our analysis has focused only on approval voting and plurality voting. Many other voting
algorithms are available, and their robustness to uncertainty needs to be examined.
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A Derivation of Approval Voting Robustness Function, Eq.(6)

We now derive the robustness function for approval voting, eq.(6).
Let m(h) denote the inner minimum in eq.(5), which occurs when:

ai = (ãi − wih)+, aj = min{T, ãj + wjh} (13)

where we have defined a truncation function as x+ = x if x ≥ 0 and x+ = 0 otherwise.
For h ≤ (T − ãj)/wj and h ≤ ãi/wi, the inner minimum is:

m(h) = ãi − wih− ãj − wjh = ãi − ãj − h(wi + wj) > δ (14)

14



For h > (T − ãj)/wj the inner minimum is:

m(h) = (ãi − wih)+ − T > δ (15)

The left hand side of this inequality is negative, while δ ≥ 0, so there is no non-negative solution
for h. Hence the robustness is the least upper bound of solutions for h of the inequality in eq.(14),
yielding:

ĥij(δ) =
ãi − ãj − δ

wi + wj
(16)

or zero if this is negative, where δ ≥ 0. Note that the robustness is less than (T − ãj)/wj, so we
needn’t consider the case where h > (T − ãj)/wj.

B Derivation of Plurality Voting Robustness Function, Eq.(9)

Let m(h) denote the inner minimum in the definition of the robustness, eq.(5), which occurs when
ai is minimal and aj is maximal, subject to the constraints of the info-gap model in eq.(7). Recalling
eq.(8) this implies:

ai = (1− γh)+ ãi (17)

Two conditions in the info-gap model constrain the maximum value of aj.The fractional-error con-
dition implies that aj ≤ (1 + γh)ãj. The condition ∑n an ≤ T (deriving from the plurality condition
that each voter casts at most 1 vote) imposes an upper limit on aj that is obtained if all other can-
didates obtain minimal votes. Thus the two conditions in the info-gap model imply that aj is the
following minimum:

aj = min

{
(1 + γh)ãj, T −∑

n 6=j
(1− γh)+ ãn

}
(18)

We will now show that (1 + γh)ãj is the minimum on the righthand side of eq.(18).
If h ≤ 1/γ, then:

(1 + γh)ãj −
(

T −∑
n 6=j

(1− γh)+ ãn

)
= −T + (1 + γh)ãj + (1− γh) ∑

n 6=j
ãn (19)

= −T +
N

∑
n=1

ãn︸ ︷︷ ︸
≤ 0

+γh

(
ãj −∑

n 6=j
ãn

)
︸ ︷︷ ︸

< 0

(20)

< 0 (21)

The sum of the first two terms on the right of eq.(20) is non-positive due to the constraint in the info-
gap model on the sum of the votes. The second parenthetical term on the right of eq.(20) is negative
because ãi > ãj and all votes are non-negative. The strict inequality in eq.(21) results. From this we
conclude that (1 + γh)ãj is the minimum on the righthand side of eq.(18) for all h ≤ 1/γ.

Thus, for h ≤ 1/γ, the inner minimum in the definition of the robustness is:

m(h) = (1− γh)+ ãi − (1 + γh)ãj = ãi − ãj − (ãi + ãj)γh (22)

The robustness is the least upper bound of h values for which m(h) > δ. Equating the righthand
side of eq.(22) to δ and solving for h yields:

ĥij(δ) =
ãi − ãj − δ

(ãi + ãj)γ
(23)
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This is less than 1/γ so we needn’t consider h > 1/γ. This is eq.(9).

C Evaluating the Robustness Function for Proportional Representation
by Plurality Voting

Let mn(h) denote the inner minimum in the definition of the robustness function, ĥn( fc) in eq.(12).
A plot of h vs mn(h) is the same as a plot of ĥn( fc) vs fc. In other words, mn(h) is the inverse of the
robustness function, and knowledge of mn(h) is equivalent to knowledge of ĥn( fc). We will derive
an expression for mn(h).

From eq.(10) one can readily show that:

d fn

dan
≥ 0 and

d fn

daj
≤ 0 if j 6= n (24)

From these relations we conclude that mn(h) is obtained when an is chosen as small as possible,
and each aj for j 6= n is chosen as large as possible, subject to the constraints of the info-gap model,
eq.(7), and employing eq.(8). Thus we find that mn(h) is obtained with:

an = (1− γh)+ ãn (25)

aj = (1 + γh)ãj, j 6= n (26)

subject to the constraint on the sum of all N votes: ∑N
j=1 aj ≤ T. Thus eqs.(25) and (26) must satisfy:

N

∑
j=1

aj = min

(
T, (1− γh)+ ãn + (1 + γh) ∑

j 6=n
ãj

)
(27)

where T is the total number of participating voters. mn(h) is obtained by substituting eq.(25) and
(27) into eq.(10) yielding:

mn(h) =
(1− γh)+ ãn

min
(

T, (1− γh)+ ãn + (1 + γh)∑j 6=n ãj

) (28)
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