Lecture Notes on

Time-Value of Money

Yakov Ben-Haim Yitzhak Moda'i Chair in Technology and Economics Faculty of Mechanical Engineering Technion — Israel Institute of Technology Haifa 32000 Israel yakov@technion.ac.il http:/info-gap.com http://www.technion.ac.il/yakov

Source material:

• DeGarmo, E. Paul, William G. Sullivan, James A. Bontadelli and Elin M. Wicks, 1997, *Engineering Economy.* 10th ed., chapters 3–4, Prentice-Hall, Upper Saddle River, NJ.

• Ben-Haim, Yakov, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.

• Ben-Haim, Yakov, 2006, *Info-Gap Decision Theory: Decisions Under Severe Uncertainty,* 2nd edition, Academic Press, London.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

I	Time-Value of Money	4			
1	Time, Money and Engineering Design	4			
2	Simple Interest				
3	Compound Interest	6			
4	Interest Formulas for Present and Future Equivalent Values	7			
	4.1 Single Loan or Investment	7			
	4.2 Constant Loan or Investment	8			
	4.2.1 Find F given A , N and i	9			
	4.2.2 Find P given A , N and i	10			
	4.2.3 Find A given P , N and i	11			
	4.3 Variable Loan or Investment	12			
	4.4 Variable Interest, Loan or Investment	13			
	4.5 Compounding More Often Than Once per Year	14			
II	Applications of Time-Money Relationships	16			
5	Present Worth Method	17			
6	Future Worth Method	20			

⁰\lectures\Econ-Dec-Mak\money-time02.tex 10.4.2022 © Yakov Ben-Haim 2022.

	Implications of Uncertainty	22
7	Uncertain Profit Rate, i, of a Single Investment, P 7.1 Uncertainty 7.2 Robustness 7.3 Decision Making and the Innovation Dilemma	22 23 24 26
8	Uncertain Constant Yearly Profit, A 8.1 Info-Gap on A 8.2 PDF of A 8.3 Info-Gap on PDF of A	27 27 29 31
9	Uncertain Return, i , on Uncertain Constant Yearly Profit, A	33
10	Present and Future Worth Methods with Uncertainty10.1 Example 5, p.17, Re-Visited10.2 Example 7, p.19, Re-Visited10.3 Example 8, p.21, Re-Visited10.4 Info-Gap on A: Are PW and FW Robust Preferences the Same?10.5 Info-Gap on i: Are PW and FW Robust Preferences the Same?	35 37 40 42 43
11	Strategic Uncertainty 11.1 Preliminary Example: 1 Allocation 11.2 1 Allocation with Strategic Uncertainty 11.3 2 Allocations with Strategic Uncertainty 11.4 Asymmetric Information and Strategic Uncertainty: Employment	45 46 48 50
12	Opportuneness: The Other Side of Uncertainty 12.1 Opportuneness and Uncertain Constant Yearly Profit, A	54 54 56 57

\S The problem:

- Given several different design concepts, each technologically acceptable.
- Select one option or prioritize all the options.

\S The economic approach:

- Treat each option as a capital investment.
- Consider:
 - Associated expenditures for implementation.
 - Revenues or savings over time.
 - Attractive or acceptable return on investment.
 - Cash flows over time: time-value of money.

\S Why should the engineer study economics?

- Cost and revenue are unavoidable in practical engineering in industry, government, etc.
- The engineer must be able to communicate and collaborate with the economist:
 - \circ Economic decisions depend on engineering considerations.
 - Engineering decisions depend on economic considerations.
- Technology influences society, and society influences technology: Engineering is both a technical and a social science.¹
- \S We will deal with **design-prioritization** in part II, p.16.
- \S We first study the **time-value of money** in part I on p.4.
- \S In part III we will study the implications of uncertainty.

¹Yakov Ben-Haim, 2000, Why the best engineers should study humanities, *Intl J for Mechanical Engineering Education*, 28: 195–200. Link to pre-print on: http://info-gap.com/content.php?id=23

Part I Time-Value of Money

1 Time, Money and Engineering Design

\S Design problem: discrete options.

- Goal: design system for 10-year operation.
- Option 1: High quality, expensive 10-year components.
- Option 2: Medium quality, less expensive 5-year components. Re-purchase after 5 years.
- Which design preferable?
 - What are the considerations?
 - How to compare costs?

\S Design problem: continuous options.

- Goal: design system for 10-year operation.
- Many options, allowing continuous trade off between price and life.
- Which design preferable?
 - What are the considerations?
 - How to compare costs?

\S Repair options.

- The production system is broken.
- When functional, the system produces goods worth \$500,000 per year.
- Various repair technologies have different costs and projected lifetimes.
- How much can we spend on repair that would return the system to N years of production?
- Which repair technology should we use?
- Should we look for other repair technologies?

2 Simple Interest

§ Primary source: DeGarmo et al, p.65.

 \S Interest: "Money paid for the use of money lent (the principal), or for forbearance of a debt, according to a fixed ratio".²

§ **Biblical prohibition:** "If you lend money to any of my people with you that is poor, you shall not be to him as a creditor; nor shall you lay upon him interest."³ (transparency)

§ Simple interest:⁴ The total amount of interest paid is *linearly proportional* to:

- Initial loan, P, (the principal).⁵
- \bullet The number of periods, N.

§ Interest rate, *i*:

- Proportionality constant.
- E.g., 10% interest: i = 0.1.

 \S Total interest payment, *I*, on principal *P* for *N* periods at interest rate *i*:

$$I = PNi \tag{1}$$

Example: P = \$200, N = 5 periods (e.g. years), i = 0.1:

$$I = \$200 \times 5 \times 0.1 = \$100 \tag{2}$$

 \S Total repayment:

$$C = (1 + Ni)P \tag{3}$$

 \S We will **not use** simple interest because it is not used in practice.

²OED, online, 21.9.2012.

³ Exodus, 22:24.

⁴Interest: rebeet.

⁵Principal: keren.

3 Compound Interest

§ Primary source: DeGarmo *et al,* p.66.

§ **Compound interest:**⁶ The interest charge for any period is linearly proportional to both:

- Remaining principal, and
- Accumulated interest up to beginning of that period.

Example 1 4 different compound-interest schemes. See table 1

- \$8,000 principal at 10% annually for 4 years.
- Plan 1: At end of each year pay \$2,000 plus interest due.
- Plan 2: Pay interest due at end of each year, and pay principal at end of 4 years.
- Plan 3: Pay in 4 equal end-of-year payments.
- Plan 4: Pay principal and interest in one payment at end of 4 years.

Year	Amount owed	Interest	Principal	Total	
	at beginning	accrued	payment	end-of-year	
	of year	for year		payment	
Plan 1:					
1	8,000	800	2,000	2,800	
2	6,000	600	2,000	2,600	
3	4,000	400	2,000	2,400	
4	2,000	200	2,000	2,200	
Total:	20,000 \$-yr	2,000	8,000	10,000	
Plan 2:					
1	8,000	800	0	800	
2	8,000	800	0	800	
3	8,000	800	0	800	
4	8,000	800	8,000	8,800	
Total:	32,000 \$-yr	3,200	8,000	11,200	
Plan 3:					
1	8,000	800	1,724	2,524	
2	6,276	628	1,896	2,524	
3	4,380	438	2,086	2,524	
4	2,294	230	2,294	2,524	
Total:	20,960 \$-yr	2,096	8,000	10,096	
Plan 4:					
1	8,000	800	0	0	
2	8,800	880	0	0	
3	9,680	968	0	0	
4	10,648	1,065	8,000	11,713	
Total:	37,130 \$-yr	3,713	8,000	11,713	

Table 1: 4 repayment plans. \$8,000 principal, 10% annual interest, 4 years. (Transp.)

⁶Compound interest: rebeet de'rebeet, rebeet tzvurah.

4

4.1 Single Loan or Investment

Equivalent Values

§ **Primary source:** DeGarmo *et al,* pp.73–77.

Figure 1: Cash flow program, section 4.1.

§ Cash flow program, fig. 1:

- Single **present** sum *P*: loan or investment at time t = 0.
- Single future sum F.
- N periods.
- *i*: Interest rate (for loan) or profit rate (for investment).

\S Find F given P:

- After 1 period: F = (1+i)P.
- After 2 periods: $F = (1+i)[(1+i)P] = (1+i)^2P$.
- After *N* periods:

$$F = (1+i)^N P \tag{4}$$

 \S Find P given F. Invert eq.(4):

$$P = \frac{1}{(1+i)^N} F \tag{5}$$

4.2 Constant Loan or Investment

§ **Primary source:** DeGarmo *et al,* pp.78–85.

Figure 2: Cash flow program, section 4.2.

\S Cash flow program, fig. 2:

- *A*: An **annual** loan, investment or profit, occurring at the **end of each period**. (Sometimes called annuity)⁷
- *i*: Interest rate (for loan) or profit rate (for investment).
- N periods.

\S Equivalent present, annual and future sums:

- Given A, N and i, find:
 - Future equivalent sum *F* occurring at the same time as the last *A*, at **end of period** *N*. (Section 4.2.1, p.9.)
 - \circ Present equivalent sum P:

loan or investment occurring 1 period before first constant amount A.

(Section 4.2.2, p.10.)

• Given P, N and i, find:

 Annual equivalent sum A occuring at end of each period. (Section 4.2.3, p.11.)

4.2.1 Find F given A, N and i

§ Motivation:

- Make N annual deposits of A dollars at end of each year.
- Annual interest is *i*.
- How much can be withdrawn at end of year N?

§ Motivation:

- Earn N annual profits of A dollars at end of each year.
- Re-invest at profit rate *i*.
- How much can be withdrawn at end of year N?

§ Sums of a geometric series that we will use frequently, for $x \neq 1$:

$$\sum_{n=0}^{N-1} x^n = \frac{x^N - 1}{x - 1} \tag{6}$$

$$\sum_{n=1}^{N-1} x^n = \frac{x^N - x}{x - 1}$$
(7)

• Special case: $x = \frac{1}{1+i}$:

$$\sum_{n=0}^{N-1} \frac{1}{(1+i)^n} = \frac{1 - \frac{1}{(1+i)^N}}{1 - \frac{1}{1+i}} = \frac{1 + i - (1+i)^{-(N-1)}}{i}$$
(8)

$$\sum_{n=1}^{N-1} \frac{1}{(1+i)^n} = \frac{\frac{1}{1+i} - \frac{1}{(1+i)^N}}{1 - \frac{1}{1+i}} = \frac{1 - (1+i)^{-(N-1)}}{i}$$
(9)

 \S Find F given A, N and i: Value of annuity plus interest after N periods.

- From *N*th period: $(1+i)^0 A$. (Because last A at end of last period.)
- From (N-1)th period: $(1+i)^0(1+i)A = (1+i)^1A$.
- From (N-2)th period: $(1+i)^0(1+i)(1+i)A = (1+i)^2A$.
- From (N n)th period: $(1 + i)^n A$, n = 0, ..., N 1.
- After all N periods:

$$F = (1+i)^0 A + (1+i)^1 A + (1+i)^2 A + \dots + (1+i)^{N-1} A$$
(10)

$$= \sum_{n=0}^{N-1} (1+i)^n A$$
(11)

$$= \frac{(1+i)^N - 1}{i}A$$
 (12)

 \S **Example** of eq.(12), table 2, p.10 (transparency):

- Column 3: ratio of final worth, F, to annuity, A. Why does F/A increase as i increases?
- Column 4: effect of compound interest: F > NA. Note highly non-linear effect at long time.

N	i	F/A	F/NA
5	0.03	5.3091	1.0618
5	0.1	6.1051	1.2210
10	0.03	11.4639	1.1464
10	0.1	15.9374	1.5937
30	0.03	47.5754	1.5858
30	0.1	164.4940	5.4831

Table 2: Example of eq.(12). (Transp.)

4.2.2 Find P given A, N and i

§ Motivation:

- Repair of a machine now would increase output by \$20,000 at end of each year for 5 years.
- We can take a loan now at 7% interest to finance the repair.
- How large a loan can we take if we must cover it from accumulated increased earning after 5 years?

§ **Repayment of Ioan**, P, after N years at interest i, from eq.(4), p.7:

$$F = (1+i)^N P \tag{13}$$

§ The loan, *P*, must be equivalent to the annuity, *A*. Hence:

Eq.(13) must equal accumulated value of increased yearly earnings, A, eq.(12), p.9:

$$F = \frac{(1+i)^N - 1}{i}A$$
 (14)

 \S Equate eqs.(13) and (14) and solve for *P*:

$$P = \frac{(1+i)^N - 1}{i(1+i)^N} A = \frac{1 - (1+i)^{-N}}{i} A$$
(15)

- This is the largest loan we can cover from accumulated earnings.
- This is the present (starting time, t = 0) equivalent value of the annuity.

§ **Example** of eq.(15), table 3 (transparency):

• Column 3: ratio of loan, P, to annuity, A. Why does P/A decrease as i increases, unlike table 2?

• Column 4: effect of compound interest: P < NA.

N	i	P/A	P/NA		
5	0.03	4.580	0.916		
5	0.1	3.791	0.758		
10	0.03	8.530	0.853		
10	0.1	6.145	0.615		
30	0.03	19.600	0.655		
30	0.1	9.427	0.314		

Table 3: Example of eq.(15). (Transp.)

4.2.3 Find A given P, N and i

 $\S F$ and A are related by eq.(12), p.9:

$$F = \frac{(1+i)^N - 1}{i}A$$
 (16)

• Thus:

$$A = \frac{i}{(1+i)^N - 1}F$$
(17)

• F and P are related by eq.(4), p.7:

$$F = (1+i)^N P \tag{18}$$

• Thus A and P are related by:

$$A = \frac{i(1+i)^N}{(1+i)^N - 1}P$$
(19)

Example 2 We can now explain Plan 3 in table 1, p.6.

- The principal is P = 8,000.
- The interest rate is i = 0.1.
- The number of periods is N = 4.
- Thus the equivalent equal annual payments, *A*, are from eq.(19):

$$A = \frac{0.1 \times 1.1^4}{1.1^4 - 1} 8,000 = 0.3154708 \times 8,000 = 2,523.77$$
 (20)

4.3 Variable Loan or Investment

\S Cash flow program:

- *A*₁, *A*₂, ..., *A*_N: Sequence of annual loans or investments, occurring at the **end of each period**.
- *i*: Interest rate (for loan) or profit rate (for investment).
- $\bullet~N$ periods.

\S Future equivalent sum: Given A_1, A_2, \ldots, A_N and *i*, find:

- Future equivalent sum F occurring at the same time as A_N .
- Generalization of eq.(10) on p.9:
- From *N*th period: $(1+i)^0 A_N$.
- From (N-1)th period: $(1+i)^0(1+i)A_{N-1} = (1+i)^1A_{N-1}$.
- From (N-2)th period: $(1+i)^0(1+i)(1+i)A_{N-2} = (1+i)^2A_{N-2}$.
- From (N n)th period: $(1 + i)^n A_{N-n}$, n = 0, ..., N 1.

$$F = (1+i)^0 A_{N-0} + (1+i)^1 A_{N-1} + (1+i)^2 A_{N-2} + \dots + (1+i)^{N-1} A_{N-(N-1)}$$
(21)

$$= \sum_{n=0}^{N-1} (1+i)^n A_{N-n}$$
 (22)

\S **Present equivalent sum:** Given A_1, A_2, \ldots, A_N and *i*, find:

- Present equivalent sum P: loan or investment occurring 1 period before first amount A_1 .
- Analogous to eqs.(13)–(15), p.10:
 - \circ **Repayment of loan**, *P*, after *N* years at interest *i*, from eq.(4), p.7:

$$F = (1+i)^N P \tag{23}$$

- This must equal accumulated value of increased yearly earnings, eq.(22).
- \circ Equate eqs.(22) and (23) and solve for P:

$$P = \frac{1}{(1+i)^N} \sum_{n=0}^{N-1} (1+i)^n A_{N-n}$$
(24)

$$= \sum_{n=0}^{N-1} (1+i)^{-(N-n)} A_{N-n}$$
(25)

- This is the largest loan we can cover from accumulated earnings.
- This is the present (starting time) equivalent value of the annuity.

4.4 Variable Interest, Loan or Investment

§ Partial source: DeGarmo et al, p.101.

§ Cash flow program:

- *A*₁, *A*₂, ..., *A*_N: Sequence of annual loans or investments, occurring at the end of each period.
- i_1, i_2, \ldots, i_N : Sequence of annual interest rates (for loan) or profit rates (for investment).
- N periods.

§ Future equivalent sum: Given A_1, A_2, \ldots, A_N and i_1, i_2, \ldots, i_N , find:

- Future equivalent sum F occurring at the same time as A_N .
- Generalization of eqs.(21) and (22) on p.12:
- From *N*th period: $(1 + i_N)^0 A_N$.
- From (N-1)th period: $(1+i_N)^0(1+i_{N-1})A_{N-1}$.
- From (N-2)th period: $(1+i_N)^0(1+i_{N-1})(1+i_{N-2})A_{N-2}$.
- From (N-n)th period: $(1+i_N)^0(1+i_{N-1})\cdots(1+i_{N-(n-1)})(1+i_{N-n})A_{N-n}$, $n=0,\ldots,N-1$.

$$F = \sum_{n=0}^{N-1} \left(\prod_{k=1}^{n} (1+i_{N-k}) \right) A_{N-n}$$
(26)

- § Present equivalent sum: Given A_1, A_2, \ldots, A_N and i_1, i_2, \ldots, i_N , find:
 - Present equivalent sum P: loan or investment occurring 1 period before first amount A_1 .
 - Analogous to eqs.(23)–(24), p.12:
 - \circ **Repayment of loan**, *P*, after *N* years at interest *i*, generalizing eq.(4), p.7:

$$F = \left(\prod_{k=0}^{N-1} (1+i_{N-k})\right) P$$
(27)

- This must equal accumulated value of increased yearly earnings, eq.(26).
- \circ Equate eqs.(26) and (27) and solve for P:

$$P = \frac{\sum_{n=0}^{N-1} \left(\prod_{k=1}^{n} (1+i_{N-k})\right) A_{N-n}}{\prod_{k=0}^{N-1} (1+i_{N-k})}$$
(28)

- This is the largest loan we can cover from accumulated earnings.

- This is the present (starting time) equivalent value of the annuity.

4.5 Compounding More Often Than Once per Year

Example 3 (DeGarmo, p.105.)

• Statement:

\$100 is invested for 10 years at nominal 6% interest per year, compounded quarterly.

What is the Future Worth (FW) after 10 years?

- Solution 1:
 - \circ 4 compounding periods per year. Total of $4\times10=40$ periods.
 - \circ Interest rate per period is (6%)/4 = 1.5% which means i=0.015.
 - \circ The FW after 10 years is, from eq.(4), p.7:

$$F = (1+i)^N P = 1.015^{40} \times 100 = \$1\$1.40$$
(29)

• Solution 2:

 \circ What we mean by "compounded quarterly" is that

the effective annual interest rate is defined by the following 2 relations:

$$i_{\rm qtr} = i_{\rm nominal}/4$$
 (30)

and

$$1 + i_{\text{ef ann}} = (1 + i_{\text{qtr}})^4 \implies i_{\text{ef ann}} = (1 + 0.015)^4 - 1 = 0.061364$$
 (31)

• Thus the effective annual interest rate is 6.1364%.

 \circ The FW after 10 years is, from eq.(4), p.7:

$$F = 1.061364^{10} \times 100 = \$181.40 \tag{32}$$

• Why do eqs.(29) and (32) agree? The general solution will explain.

$\boldsymbol{\S}$ General solution.

- A sum P is invested for N years at
 - nominal annual interest i compounded m equally spaced times per year.
- The interest rate per period is (generalization of eq.(30)):

$$i_{\rm per} = \frac{i}{m} \tag{33}$$

• What we mean by "compounded *m* times per year" is that the *effective annual interest rate* is determined by (generalization of eq.(31)):

$$1 + i_{\text{ef ann}} = (1 + i_{\text{per}})^m \tag{34}$$

• The FW by the "period calculation" method is:

$$F_{\rm per} = (1+i_{\rm per})^{mN} P \tag{35}$$

• The FW by the "effective annual calculation" method is:

$$F_{\rm ef\,ann} = (1 + i_{\rm ef\,ann})^N P \tag{36}$$

• Combining eqs.(34)–(36) shows:

$$F_{\rm ef\,ann} = F_{\rm per} \tag{37}$$

Example 4 § Example. (DeGarmo, p.105)

- \$10,000 loan at nominal 12% annual interest for 5 years, compounded monthly.
- Equal end-of-month payments, *A*, for 5 years.
- What is the value of *A*?
- Solution:
 - \circ The period interest, eq.(33), p.14, is i=0.12/12=0.01.
 - \circ The principle, P = 10,000, is related to equal monthly payments A by eq.(19), p.11:

$$A = \frac{i(1+i)^N}{(1+i)^N - 1}P$$
(38)

$$= 0.0222444P$$
 (39)

$$=$$
 \$222.44 (40)

- Why is the following calculation not correct?
 - The FW of the loan is:

$$FW = 1.01^{5 \times 12}P = 1.816697 \times 10,000 = 18,166.97$$
(41)

• Divide this into 60 equal payments:

$$A' = \frac{18,166.97}{60} = \$302.78\tag{42}$$

- \circ Eq.(41) is correct.
- Eq.(42) is wrong because it takes a final worth and charges it at earlier times, ignoring the equivalent value of these intermediate payments.
 This explains why A' > A.

Part II Applications of Time-Money Relationships

$\boldsymbol{\S}$ The problem:

- Given several different design concepts, each technologically acceptable.
- Select one option or prioritize all the options.

\S The economic approach:

- Treat each option as a capital investment.
- Consider:
 - Expenditures for implementation.
 - Revenues or savings over time.
 - Attractive or acceptable return on investment.

\S We will consider two time-value methods:

- Present Worth, section 5, p.17.
- Future Worth, section 6, p.20.
- We will show that these are equivalent.

§ Central idea: Minimum Attractive Rate of Return (MARR):8

- The MARR is an interest rate or profit rate.
- Subjective judgment.
- Least rate of return from other known alternatives.
- Examples: DeGarmo pp.141-143.

5 Present Worth Method

§ Primary source: DeGarmo et al, pp.144–149.

§ Basic idea of present worth (PW):

- Evaluate present worth (net present value) of all cash flows (cost and revenue), based on an interest rate usually equal to the MARR.
- The PW is the profit left over after the investment.
- We assume that cash revenue is invested at interest rate equal to the MARR.
- The PW is also called Net Present Value (NPV).

 \S Basic Formula for calculating the PW.

- i =interest rate, e.g. MARR.
- $F_k = \text{cash flow in end of periods } k = 0, 1, \dots, N$. Positive for revenue, negative for cost. $F_0 = \text{initial investment at start of the } k = 1 \text{ period.}$
- N = number of periods.
- Basic relation, eq.(5), p.7, PW of revenue F_k at period k:

$$P_k = \frac{1}{(1+i)^k} F_k \tag{43}$$

• Formula for calculating the *PW* of revenue stream F_0, F_1, \ldots, F_N :

$$PW = (1+i)^{-0}F_0 + (1+i)^{-1}F_1 + \dots + (1+i)^{-k}F_k + \dots + (1+i)^{-N}F_N$$
(44)

$$= \sum_{k=0}^{N} (1+i)^{-k} F_k$$
(45)

• For a constant revenue stream, F, F, \ldots, F from k = 0 to k = N:

$$PW = \sum_{k=0}^{N} (1+i)^{-k} F$$
(46)

$$= \frac{\left(\frac{1}{1+i}\right)^{N+1} - 1}{\frac{1}{1+i} - 1}F$$
(47)

$$= \frac{1+i-(1+i)^{-N}}{i}F$$
(48)

Example 5 Does the Present Worth method justify the following project?

- S = Initial cost of the project = \$10,000.
- R_k = revenue at the end of *k*th period = \$5,310.
- C_k = operating cost at the end of *k*th period = \$3,000.
- N = number of periods.
- M = re-sale value of equipment at end of project = \$2,000.
- MARR = 10%, so i = 0.1.
- Adapting eq.(45), p.17, the *PW* is:

$$PW = -S + \sum_{k=1}^{N} (1+i)^{-k} R_k - \sum_{k=1}^{N} (1+i)^{-k} C_k + (1+i)^{-N} M$$
(49)

$$= -10,000 + 3.7908 \times 5,310 - 3.7908 \times 3,000 + 0.6209 \times 2,000$$
 (50)

$$= -10,000 + 20,129.15 - 11,372.40 + 1,241.80$$
(51)

$$= -\$1.41$$
 (52)

• The project essentially breaks even (it loses \$1.41), so it is marginally justified by PW.

§ Bonds:⁹ General formulation.¹⁰

• Bonds and stocks¹¹ are both securities:¹²

Bonds: a loan to the firm. Stocks: equity or partial ownership of firm.

- F = face value (putative purchase cost) of bond.
- r =bond rate = interest paid by bond at end of each period.
- C = rF = coupon payment (periodic interest payment) at end of each period.
- M = market value of bond at maturity; usually equals F.
- i = discount rate¹³ at which the sum of all future cash flows from the bond (coupons and principal) are equal to the price of the bond. May be the MARR.
- N = number of periods.
- Formula for calculating a bond's price.¹⁴ This is the PW of the bond:

$$P = (1+i)^{-N}M + \sum_{k=1}^{N} (1+i)^{-k}C$$
(53)

$$= (1+i)^{-N}M + \frac{1-(1+i)^{-N}}{i}C$$
(54)

Example 6 Bonds.¹⁵

- *F* = face value = \$5,000.
- r = bond rate = 8% paid annually at end of each year.
- Bond will be redeemed at face value after 20 years, so M = F and N = 20.
- (a) How much should be paid now to receive a yield of 10% per year on the investment? $C = 0.08 \times 5,000 = 400$. M = 5,000. i = 0.1, so from eq.(54):

$$P = 1.1^{-20}5000 + \frac{1 - 1.1^{-20}}{0.1}400$$
(55)

$$= 0.1486 \times 5,000 + 8.5135 \times 400 \tag{56}$$

$$= 743.00 + 3,405.43 \tag{57}$$

$$= 4,148.43$$
 (58)

• (b) If this bond is purchased now for \$4,600, what annual yield would the buyer receive? We must numerically solve eq.(54) for *i* with *P*, *M*, *N* and *C* given:

$$4,600 = (1+i)^{-20}5000 + \frac{1 - (1+i)^{-20}}{i}400$$
(59)

The result is about 8.9% per year, which is less than 10% because 4,600 > 4,148.43.

⁹Igrot hov.

¹⁰http://en.wikipedia.org/wiki/Bond_(finance)

¹¹miniot.

¹²niyarot erech.

¹³Discount rate: hivun.

¹⁴ http://en.wikipedia.org/wiki/Bond_valuation

¹⁵DeGarmo, p.148.

Example 7 (DeGarmo, pp.168–170).

- Project definition:
 - $\circ P =$ initial investment = \$140,000.
 - R_k = revenue at end of *k*th year = $\frac{2}{3}(45,000+5,000k)$.
 - C_k = operating cost paid at end of *k*th year = \$10,000.
 - $\circ M_k$ = maintenance cost paid at end of *k*th year = \$1,800.
 - $\circ T_k = tax$ and insurance paid at end of kth year = 0.02P = 2,800.
 - $\circ i = MARR$ interest rate = 15%.
- Goal: recover investment with interest at the MARR after N = 10 years.
- Question: Should the project be launched?
- Solution:
 - Evaluate the PW.
 - Launch project if *PW* is positive.
 - (What about risk and uncertainty?)
 - Adapting the PW relation, eq.(45), p.17:

$$PW = -P + \sum_{k=1}^{N} (R_k - C_k - M_k - T_k)(1+i)^{-k}$$
(60)

$$= -140,000 + \sum_{k=1}^{10} \left(\frac{2}{3} (45,000 + 5,000k) - 10,000 - 1,800 - 2,800 \right) 1.15^{-k}$$
 (61)

$$=$$
 \$10,619 (62)

∘ The PW is positive so, ignoring risk and uncertainty, the project is justified. ■

6 Future Worth Method

§ Primary source: DeGarmo et al, pp.149–150.

§ Basic idea of future worth (FW):

- Evaluate equivalent worth of all cash flows (cost and revenue) at end of planning horizon, based on an interest rate usually equal to the MARR.
- The FW is equivalent to the PW.

 \S Basic Formula for calculating the FW.

- i =interest rate, e.g. MARR.
- $F_k = \text{cash flow in end of periods } k = 0, 1, \dots, N$. Positive for revenue, negative for cost. $F_0 = \text{initial investment at start of the } k = 1 \text{ period.}$
- N = number of periods.
- Basic relation, eq.(4), p.7, *FW* at end of planning horizon, of revenue *F_k* at end of period *k*:

$$FW_k = (1+i)^{N-k} F_k \tag{63}$$

• Formula for calculating the *FW* of revenue stream F_0, F_1, \ldots, F_N :

$$FW = (1+i)^{N} F_{0} + (1+i)^{N-1} F_{1} + \dots + (1+i)^{N-k} F_{k} + \dots + (1+i)^{0} F_{N}$$
(64)

$$= \sum_{k=0}^{N} (1+i)^{N-k} F_k$$
(65)

• The relation between PW and FW, eq.(5), p.7:

$$PW = (1+i)^{-N} FW$$
(66)

$$= (1+i)^{-N} \sum_{k=0}^{N} (1+i)^{N-k} F_k$$
(67)

$$= \sum_{k=0}^{N} (1+i)^{-k} F_k$$
 (68)

which is eq.(45), p.17.

Example 8

- $F_0 = $25,000 = \text{cost of new equipment.}$
- $F_k = \$8,000$ net revenue (after operating cost), $k = 1, \ldots, 5$.
- i = 0.2 = 20% MARR.
- N = 5 = planning horizon.
- M = \$5,000 =market value of equipment at end of planning horizon.
- Adapting eq.(65), p.20, the FW is:

$$FW = \sum_{k=0}^{N} (1+i)^{N-k} F_k + M$$
(69)

$$= \underbrace{-(1.2)^5 \times 25,000}_{\text{step }k=0} + \underbrace{\sum_{k=0}^4 1.2^k \times 8,000}_{k=0} + 5,000 \tag{70}$$

$$= -1.2^5 \times 25,000 + \frac{1.2^5 - 1}{1.2 - 1} \times 8,000 + 5,000$$
(71)

$$= -62,208+59,532.80+5,000 \tag{72}$$

$$= 2,324.80$$
 (73)

- This project is profitable.
- The PW of this project is:

$$PW = (1+i)^{-N} FW \tag{74}$$

$$= (1.2)^{-5} \times 2,324.80 \tag{75}$$

$$= 934.28$$
 (76)

\S Sources of uncertainty:

- The **future** is uncertain:
 - Costs.
 - Revenues.
 - o Interest rates.
 - Technological innovations.
 - \circ Social and economic changes or upheavals.
- The **present** is uncertain:
 - \circ Capabilities.
 - Goals.
 - \circ Opportunities.
- The past is uncertain:
 - Biased or incomplete historical data.
 - \circ Limited understanding of past processes, successes and failures.

7 Uncertain Profit Rate, *i*, of a Single Investment, *P*

§ Background: section 4.1, p.7.

7.1 Uncertainty

§ Problem statement:

- P =investment now.
- i = projected profit rate, %/year.
- *FW* = future worth:

$$FW = (1+i)^N P \tag{77}$$

- Questions:
 - \circ Is the investment worth it?
 - \circ Is the FW good enough? Is FW at least as large as FW_c ?

$$FW(i) \ge FW_{\rm c} \tag{78}$$

• *Problem: i* highly uncertain.

 \S The info-gap.

- \tilde{i} = **known** estimate of profit rate.
- i = unknown but constant true profit rate. Why is assumption of constancy important? Eq.(77)
- s = known estimate of error of \tilde{i} . i may err by s or more. Worst case not known.
- Fractional error:

$$\left|\frac{i-\widetilde{i}}{s}\right| \tag{79}$$

• Fractional error is **bounded**:

$$\left|\frac{i-\widetilde{i}}{s}\right| \le h \tag{80}$$

• The bound, *h*, is **unknown:**

$$\left|\frac{i-\widetilde{i}}{s}\right| \le h, \quad h \ge 0 \tag{81}$$

• Fractional-error info-gap model for uncertain profit rate:¹⁶

$$\mathcal{U}(h) = \left\{ i: \left| \frac{i - \widetilde{i}}{s} \right| \le h \right\}, \quad h \ge 0$$
(82)

- \circ Unbounded family of nested sets of *i* values.
- No known worst case.
- \circ No known probability distribution.
- $\circ h$ is the horizon of uncertainty.
- \S The question: Is the FW good enough? Is FW at least as large as a critical value FW_c ?

$$FW(i) \ge FW_{\rm c} \tag{83}$$

- Can we answer this question? No, because *i* is unknown.
- What (useful) question can we answer?

¹⁶There are other constraints on an interest rate, i, but we won't worry about them now.

7.2 Robustness

§ **Robustness question** (that we *can* answer): How large an error in \tilde{i} can we tolerate?

\S Robustness function:

$$\hat{h}(FW_c) = \text{maximum tolerable uncertainty}$$
 (84)

= maximum
$$h$$
 such that $FW(i) \ge FW_c$ for all $i \in U(h)$ (85)

$$= \max\left\{h:\left(\min_{i\in\mathcal{U}(h)} FW(i)\right) \ge FW_{c}\right\}$$
(86)

\S Evaluating the robustness:

• Inner minimum:

$$m(h) = \min_{i \in \mathcal{U}(h)} FW(i)$$
(87)

- $\bullet \; m(h) \; {\rm vs} \; h$:
 - Decreasing function. Why?
 - \circ From eq.(77) (*FW* = $(1 + i)^N P$) and IGM in eq.(82), p.23: m(h) occurs at $i = \tilde{i} sh$:¹⁷

$$m(h) = (1 + \tilde{i} - sh)^N P \tag{88}$$

• What is greatest tolerable horizon of uncertainty, h? Equate m(h) to FW_c and solve for h:

$$(1+\tilde{i}-sh)^{N}P = FW_{c} \implies \left[\hat{h}(FW_{c}) = \frac{1+\tilde{i}}{s} - \frac{1}{s}\left(\frac{FW_{c}}{P}\right)^{1/N}\right]$$
(89)

- \S Properties of the robustness curve: (See fig. 3)
 - Trade off: robustness up (good) only for FW_c down (bad). (Pessimist's theorem)
 - Zeroing: no robustness of predicted *FW*: $(1 + \tilde{i})^N P$.

Figure 4: m(h) is inverse function of $\hat{h}(FW_c)$.

 \S We understand from fig. 4 that m(h) is the inverse function of $\hat{h}(FW_c)$. Why?

7.3 Decision Making and the Innovation Dilemma

\S Decision making.

- Suppose your information is something like:
 - Annual profits are typically about 12%, plus or minus 2% or 4% or more, or,
 - Similar projects have had average profits of 12% with standard deviation of 3%, but the future is often surprising.
- You might quantify this information with an info-gap model like eq.(82), p.23 with $\tilde{i} = 0.12$ and s = 0.03.
- You might then construct the robustness function like eq.(89), p.24.
- \bullet What FW_c is credible? One with no less than "several" units of robustness.
- For instance, from eq.(89):

$$\hat{h}(FW_{\rm c}) \approx 3 \implies \frac{FW_{\rm c}}{P} \approx (1 + \tilde{i} - 3s)^N$$
 (90)

With $\tilde{i} = 0.12$, s = 0.03, N = 10 years this is:

$$\hat{h}(FW_{\rm c}) = 3 \implies \frac{FW_{\rm c}}{P} = (1 + 0.12 - 3 \times 0.03)^{10} = 1.03^{10} = 1.34$$
 (91)

• Compare with the nominal profit ratio predicted with the best estimate, eq.(77), p.23:

$$\frac{FW_{\rm c}(\tilde{i})}{P} = (1+\tilde{i})^N = (1.12)^{10} = 3.11$$
(92)

• Given the knowledge and the info-gap, a credible profit ratio is

1.34 (robustness = 3)

rather than

3.11 (robustness = 0).

§ Innovation dilemma.

- Choose between two projects or design concepts:
 - \circ State of the art, with standard projected profit and moderate uncertainty.
 - \circ New and innovative, with higher projected profit and higher uncertainty.
- For instance:
 - SotA: $\tilde{i} = 0.03$, s = 0.015, N = 10. So $FW(\tilde{i})/P = (1 + \tilde{i})^{10} = 1.34$.

$$\sim$$
 Innov: $\tilde{i} = 0.05$, $s = 0.04$, $N = 10$. So $FW(\tilde{i})/P = (1 + \tilde{i})^{10} = 1.63$.

• The dilemma:

Innovation is predicted to be better, but it is more uncertain and thus may be worse.

- Robustness functions shown in fig. 5.
- Note trade off and zeroing.
- SotA more robust for $FW_c/P < 1.2$. Note: $\hat{h}(FW_c/P = 1|\text{SotA}) = 2$.
- Innov more robust for $FW_c/P > 1.2$. Note: $\hat{h}(FW_c/P > 1.2|\text{innov}) < 1$.
- Neither option looks reliably attractive.
- Generic analysis:
 - \circ Cost of robustness: slope: Greater for innovative option.
 - \circ Innovative option putatively better, but greater cost of robustness.
 - Result: preference reversal.

27

Figure 5: Illustration of the innovation dilemma. (Transp.)

8 Uncertain Constant Yearly Profit, A

§ Background: section 4.2, p.8.

8.1 Info-Gap on A

§ Future worth of constant profit, eq.(12), p.9:

- A =profit at end of each period. E.g. annuity; no initial investment.
- i = reinvest at profit rate i.
- N = number of periods.
- The future worth is:

$$FW = \frac{(1+i)^N - 1}{i}A \tag{93}$$

 \S **Uncertainty:** the constant end-of-period profit, *A*, is uncertain.

- \tilde{A} = known estimated profit.
- A = unknown but constant true profit.
- $s_A =$ error of estimate. A may be more or less that \tilde{A} . No known worst case.
- Fractional-error info-gap model:

$$\mathcal{U}(h) = \left\{ A : \left| \frac{A - \widetilde{A}}{s_A} \right| \le h \right\}, \quad h \ge 0$$
(94)

\S Robust satisficing:

• Satisfy performance requirement:

$$FW(A) \ge FW_{\rm c} \tag{95}$$

• Maximize robustness to uncertainty.

\S Robustness:

$$\widehat{h}(FW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} FW(A)\right) \ge FW_{c}\right\}$$
(96)

\S Evaluating the robustness:

• Inner minimum:

$$m(h) = \min_{A \in \mathcal{U}(h)} FW(A)$$
(97)

- *m*(*h*) vs *h*:
 - Decreasing function. Why?

 - Inverse of $\hat{h}(FW_c)$. Why? From eq.(93) ($FW = \frac{(1+i)^N 1}{i}A$), minimum occurs at $A = \tilde{A} sh$:

$$m(h) = \frac{(1+i)^N - 1}{i} (\tilde{A} - s_A h)$$
(98)

• Equate to FW_c and solve for h:

$$\frac{(1+i)^N - 1}{i}(\tilde{A} - s_A h) = FW_c \implies \widehat{h}(FW_c) = \frac{\tilde{A}}{s_A} - \frac{i}{[(1+i)^N - 1]s_A}FW_c$$
(99)

Or zero if this is negative.

• Zeroing and trade off. See fig. 6.

Figure 6: Trade off and zeroing of robustness.

Figure 7: Low and High cost of robustness.

- § Consider the **cost of robustness**, determined by the slope of the robustness curve.
 - Explain the meaning of cost of robustness. See fig. 7.

slope =
$$-\frac{i}{[(1+i)^N - 1]s_A} = -\frac{1}{s_A} \left(\sum_{n=0}^{N-1} (1+i)^n\right)^{-1}$$
 (100)

Latter equality based on eq.(12), p.9.

• We see that:

$$\frac{\partial |\text{slope}|}{\partial s_A} < 0 \tag{101}$$

This means that cost of robustness **increases** as uncertainty, s_A , **increases**. Why? • We see that:

$$\frac{\partial |\mathsf{slope}|}{\partial i} < 0 \tag{102}$$

This means that cost of robustness increases as profit rate, *i*, increases. Why? From eq.(93) ($FW = \frac{(1+i)^N - 1}{i}A$): large *i* magnifies *A*, and thus magnifies uncertainty in *A*.

• Example. $i = 0.15, s_A = 0.05, N = 10$. Thus:

slope =
$$\frac{0.15}{(1.15^{10} - 1)0.05} = 0.98 \ (\approx 1)$$
 (103)

Thus decreasing FW_c by 1 unit, increases the robustness by 1 unit.

8.2 PDF of A

- \S Future worth of constant profit, eq.(12), p.9:
 - A =profit (e.g. annuity) at end of each period.
 - i = reinvest at profit rate i.
 - N = number of periods.
 - The future worth is:

$$FW(A) = \frac{(1+i)^N - 1}{i}A$$
(104)

§ Requirement:

$$FW(A) \ge FW_{\rm c} \tag{105}$$

\S Problem:

- A is a random variable (but constant in time) with probability density function (pdf) p(A).
- Is the investment reliable?

§ Solution: Use probabilistic requirement.

• Probability of failure:

$$P_{\rm f} = \mathsf{Prob}(FW(A) < FW_{\rm c}) \tag{106}$$

Figure 8: Probability of failure, eq.(120).

• Probabilistic requirement:

$$P_{\rm f} \le P_{\rm c}$$
 (107)

- \S Probability of failure for normal distribution: $A \sim \mathcal{N}(\mu, \sigma^2)$
 - The pdf:

$$p(A) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(A-\mu)^2}{2\sigma^2}\right)$$
(108)

• Probability of failure:

$$P_{\rm f} = \operatorname{Prob}(FW(A) < FW_{\rm c}) \tag{109}$$

$$= \operatorname{Prob}\left(\frac{(1+i)^N - 1}{i}A \le FW_{c}\right)$$
(110)

$$= \operatorname{Prob}\left(A \leq \underbrace{\frac{i}{(1+i)^{N}-1}FW_{c}}_{A_{c}}\right)$$
(111)

$$= \operatorname{Prob}\left(A \le A_{c}\right) \tag{112}$$

$$= \operatorname{Prob}\left(\frac{A-\mu}{\sigma} \le \frac{A_{\rm c}-\mu}{\sigma}\right)$$
(113)

- $\frac{A-\mu}{\sigma}$ is a standard normal variable, $\mathcal{N}(0,1),$ with cdf $\Phi(\cdot).$
- Thus:

$$P_{\rm f} = \Phi\left(\frac{A_{\rm c}-\mu}{\sigma}\right) \tag{114}$$

$$= \Phi\left(\frac{i}{\sigma[(1+i)^N - 1]}FW_{\rm c} - \frac{\mu}{\sigma}\right)$$
(115)

Example 9

- $FW_c = \varepsilon FW(\mu)$. E.g. $\varepsilon = 0.5$.
- From eqs.(104) and (115):

$$P_{\rm f} = \Phi\left(\frac{\varepsilon\mu}{\sigma} - \frac{\mu}{\sigma}\right) = \Phi\left(-\frac{(1-\varepsilon)\mu}{\sigma}\right) \tag{116}$$

- From figs. 9 and 10 on p.30:
 - $P_{\rm f}$ increases as critical future worth increases (e.g. as ε increases): $FW_{\rm c} = \varepsilon FW(\mu)$.
 - $\circ P_{\rm f}$ increases as relative uncertainty increases: as μ/σ decreases.

Figure 9: Probability of failure, eq.116. (Transp.)

Figure 10: Probability of failure, eq.116. (Transp.)

8.3 Info-Gap on PDF of A

- \S Future worth of constant profit, eq.(12), p.9:
 - A = profit (e.g. annuity) at end of each period.
 - i = reinvest at profit rate i.
 - N = number of periods.
 - The future worth is:

$$FW(A) = \frac{(1+i)^N - 1}{i}A$$
(117)

\S Requirement:

$$FW(A) \ge FW_{\rm c} \tag{118}$$

\S First Problem:

- A is a random variable (but constant in time) with probability density function (pdf) p(A).
- Is the investment reliable?

§ Solution: Use probabilistic requirement.

• Probability of failure:

$$P_{\rm f} = \operatorname{Prob}(FW(A) < FW_{\rm c}) \tag{119}$$

$$= \operatorname{Prob}(A \le A_{c}) \tag{120}$$

$$A_{\rm c} = \frac{i}{\sigma[(1+i)^N - 1]} FW_{\rm c}, \text{ defined in eq.(111), p.29}$$
• Probabilistic requirement:

 $P_{\rm f} \le P_{\rm c}$ (121)

§ Second problem: pdf of A, p(A), is info-gap uncertain with info-gap model U(h).

 \S Solution: Embed the probabilistic requirement in an info-gap analysis of robustness to uncertainty.

 \S Robustness:

$$\hat{h}(P_{\rm c}) = \max\left\{h: \left(\max_{p \in \mathcal{U}(h)} P_{\rm f}(p)\right) \le P_{\rm c}\right\}$$
(122)

Example 10 Normal distribution with uncertain mean.

 \S Formulation:

- $A \sim \mathcal{N}(\mu, \sigma^2)$.
- $\tilde{\mu}$ = known estimated mean.
- $\mu = \text{unknown true mean.}$
- $s_{\mu} =$ error estimate. μ may err more or less than s_{μ} .
- Info-gap model:

$$\mathcal{U}(h) = \left\{ \mu : \left| \frac{\mu - \tilde{\mu}}{s_{\mu}} \right| \le h \right\}, \quad h \ge 0$$
(123)

Figure 11: Probability of failure, eq.(120).

§ Evaluating the robustness:

- M(h) = inner maximum in eq.(122).
- M(h) occurs if p(A) is shifted maximally left, so $\mu = \tilde{\mu} s_{\mu}h$:

$$M(h) = \max_{p \in \mathcal{U}(h)} \operatorname{Prob}(A \le A_{c}|\mu)$$
(124)

$$= \operatorname{Prob}\left(\frac{A - (\widetilde{\mu} - s_{\mu}h)}{\sigma} \le \frac{A_{c} - (\widetilde{\mu} - s_{\mu}h)}{\sigma} \middle| \mu = \widetilde{\mu} - s_{\mu}h\right)$$
(125)

$$= \Phi\left(\frac{A_{\rm c} - (\tilde{\mu} - s_{\mu}h)}{\sigma}\right)$$
(126)

$$= \Phi\left(\frac{i}{\sigma[(1+i)^N - 1]}FW_c - \frac{\widetilde{\mu} - s_{\mu}h}{\sigma}\right)$$
(127)

because $\frac{A-(\widetilde{\mu}-s_{\mu}h)}{\sigma}$ is standard normal. • Let $FW_{c} = \varepsilon FW(\widetilde{\mu}) = \varepsilon \frac{(1+i)^{N}-1}{i}\widetilde{\mu}$. Eq.(127) is:

$$M(h) = \Phi\left(\frac{\varepsilon\tilde{\mu}}{\sigma} - \frac{\tilde{\mu} - s_{\mu}h}{\sigma}\right)$$
(128)

$$= \Phi\left(-\frac{(1-\varepsilon)\tilde{\mu} - s_{\mu}h}{\sigma}\right)$$
(129)

• M(h) is the inverse of $\hat{h}(P_c)$:

M(h) horizontally vs h vertically is equivalent to $P_{\rm c}$ horizontally vs $\widehat{h}(P_{\rm c})$ vertically. See figs. 12 and 13.

- Zeroing: $\hat{h}(P_c) = 0$ when $P_c = P_f(\tilde{\mu})$. Estimated probability of failure, $P_{\rm f}(\tilde{\mu})$, **increases** as relative error, σ/μ , **increases**.
- Trade off: robustness decreases (gets worse) as P_c decreases (gets better).
- Cost of robustness: increase in P_c required to obtain given increase in \hat{h} .

Cost of robustness increases as σ/μ and σ/s_{μ} increase at low $P_{\rm c}$; fig. 13.

- $P_{\rm f}(\tilde{\mu})$ and cost of robustness change in reverse directions as σ/μ changes.
 - This causes curve-crossing and preference-reversal.
 - At small $P_{\rm c}$ (fig. 13): robustness increases as relative error, σ/μ , falls (as $\frac{\mu}{\sigma}$ rises.)
 - \circ At large $P_{\rm c}$ (fig. 12): preference reversal at $P_{\rm c} = 0.5$.

Figure 12: Robustness function, based on eq.129. (Transp.)

Figure 13: Robustness function, based on eq.129. (Transp.)

9 Uncertain Return, *i*, on Uncertain Constant Yearly Profit, A

 \S **Background:** section 4.2, p. 8.

- § Future worth of constant profit, eq.(12), p.9:
 - A =profit at end of each period.
 - i = reinvest at profit rate i.
 - N = number of periods.
 - The future worth, assuming that *i* is the same in each period, is:

$$FW(A,i) = \frac{(1+i)^N - 1}{i}A$$
(130)

§ Performance requirement:

$$FW(A,i) \ge FW_{\rm c} \tag{131}$$

§ **Uncertainty:** *A* and *i* are both uncertain and constant, and we know $i \ge 0$ and $A \ge 0$ (or we can prevent i < 0 or $A \le 0$, a loss).

Fractional-error info-gap model:

$$\mathcal{U}(h) = \left\{ A, i: A \ge 0, \left| \frac{A - \widetilde{A}}{s_A} \right| \le h, i \ge 0, \left| \frac{i - \widetilde{i}}{s_i} \right| \le h \right\}, \quad h \ge 0$$
(132)

\S Robustness:

$$\widehat{h}(FW_{c}) = \max\left\{h: \left(\min_{A,i\in\mathcal{U}(h)} FW(A,i)\right) \ge FW_{c}\right\}$$
(133)

\S Evaluating the robustness:

• Inner minimum:

$$m(h) = \min_{A,i \in \mathcal{U}(h)} FW(A,i)$$
(134)

- m(h) vs h:
 - \circ Decreasing function.
 - Recall eqs.(11) and (12), p.9:

$$F = \sum_{n=0}^{N-1} (1+i)^n A = \frac{(1+i)^N - 1}{i} A$$
(135)

- \circ Inverse of $\hat{h}(FW_{c})$.
- \circ From eqs.(130), (132) and (135), the inner minimum, m(h), occurs at:

$$A = (\widetilde{A} - s_A h)^{\dagger} \text{ and } i = \max(0, \widetilde{i} - s_i h) = (\widetilde{i} - s_i h)^{\dagger}.$$

$$m(h) = \begin{cases} \frac{(1+\widetilde{i}-s_ih)^N - 1}{\widetilde{i}-s_ih} (\widetilde{A}-s_Ah)^+, & \text{for } h < \widetilde{i}/s_i \\ N(\widetilde{A}-s_Ah)^+, & \text{for } h \ge \widetilde{i}/s_i \end{cases}$$
(136)

Figure 14: Robustness function, based on eq.136. (Transp.)

Figure 15: Robustness function, based on eq.136. (Transp.)

§ Robustness functions, fig. 14. N = 10, $\tilde{A} = 1$, $s_A = 0.3$.

- Blue: $\tilde{i} = 0.03$, $s_i = 0.01$.
- Green: $\tilde{i} = 0.05$, $s_i = 0.04$.
- Similar, but mild preference reversal:

Lower return ($\tilde{i} = 0.03$) and lower uncertainty ($s_i = 0.01$) roughly equivalent to Higher return ($\tilde{i} = 0.05$) and higher uncertainty ($s_i = 0.04$)

- \S Robustness functions, fig. 15. N = 10.
 - Blue: $\tilde{i} = 0.03$, $s_i = 0.01$, $\tilde{A} = 1$, $s_A = 0.3$. (Same a blue in fig. 14.)
 - Green: $\tilde{i} = 0.05$, $s_i = 0.04$, $\tilde{A} = 1$, $s_A = 0.3$. (Same a green in fig. 14.)
 - Red: $\tilde{i} = 0.05, s_i = 0.04, \tilde{A} = 1.5, s_A = 0.5.$
 - Strong preference reversal between red and blue or green.

10 Present and Future Worth Methods with Uncertainty

§ Background: section 5.

10.1 Example 5, p.17, Re-Visited

Example 11 Example 5, p.17, re-visited.

 \S Does the Present Worth method justify the following project,

given uncertainty in revenue, cost and re-sale value?

- S = Initial cost of the project = \$10,000.
- \widetilde{R} = estimated revenue at the end of *k*th period = \$5,310.
- \widetilde{C} = estimated operating cost at the end of *k*th period = \$3,000.
- \widetilde{M} = estimated re-sale value of equipment at end of project = \$2,000.
- N = number of periods = 10.
- MARR = 10%, so i = 0.1.
- From eq.(49), p.17, the *PW* is:

$$PW(R,C,M) = -S + \sum_{k=1}^{N} (1+i)^{-k} R_k - \sum_{k=1}^{N} (1+i)^{-k} C_k + (1+i)^{-N} M$$
 (137)

• Fractional-error info-gap model for R, C and M:

$$\mathcal{U}(h) = \left\{ R, C, M : \left| \frac{R_k - \widetilde{R}}{s_{R,k}} \right| \le h, \left| \frac{C_k - \widetilde{C}}{s_{C,k}} \right| \le h, \ k = 1, \dots, N, \left| \frac{M - \widetilde{M}}{s_M} \right| \le h \right\}, \quad h \ge 0 \quad (138)$$

Consider expanding uncertainty envelopes for R and C:

$$s_{x,k} = (1+\varepsilon)^{k-1} s_x, \quad x = R \text{ or } C$$
(139)

E.g., $\varepsilon = 0.1$. Note that ε is like a discount rate on future uncertainty.

• Performance requirement:

$$PW(R, C, M) \ge PW_{c} \tag{140}$$

• Robustness: greatest tolerable uncertainty:

$$\widehat{h}(PW_{c}) = \max\left\{h: \left(\min_{R,C,M\in\mathcal{U}(h)} PW(R,C,M)\right) \ge PW_{c}\right\}$$
(141)

• The inner minimum, m(h), occurs at small R_k and M and large C_k :

$$R_k = \tilde{R} - s_{R,k}h = \tilde{R} - (1+\varepsilon)^{k-1}s_Rh$$
(142)

$$C_k = \widetilde{C} + s_{C,k}h = \widetilde{C} + (1+\varepsilon)^{k-1}s_Ch$$
(143)

$$M = \widetilde{M} - s_M h \tag{144}$$

Thus m(h) equals:

$$m(h) = -S + \sum_{k=1}^{N} (1+i)^{-k} \left[\widetilde{R} - (1+\varepsilon)^{k-1} s_R h - \widetilde{C} - (1+\varepsilon)^{k-1} s_C h \right] + (1+i)^{-N} (\widetilde{M} - s_M h)$$
(145)

$$= \underbrace{-S + (\widetilde{R} - \widetilde{C}) \sum_{k=1}^{N} (1+i)^{-k} + (1+i)^{-N} \widetilde{M}}_{PW(\widetilde{R}, \widetilde{C}, \widetilde{M})} - \underbrace{\frac{s_R + s_c}{1 + c} h \sum_{k=1}^{N} \left(\frac{1+\varepsilon}{1+c}\right)^k - (1+i)^{-N} s_M h}_{(146)}$$

$$= PW(\widetilde{R}, \widetilde{C}, \widetilde{M}) - \left(\frac{s_R + s_c}{1 + \varepsilon}Q + (1 + i)^{-N}s_M\right)h$$
(147)

Evaluate Q with eq.(7), p.9, unless $\varepsilon = i$ in which case Q = N. Question: $m(0) = PW(\widetilde{R}, \widetilde{C}, \widetilde{M})$. Why? What does this mean? Question: dm(h)/dh < 0. Why? What does this mean?

• Equate m(h) to PW_c and solve for h to obtain the robustness:

$$m(h) = PW_{\rm c} \implies \left| \widehat{h}(PW_{\rm c}) = \frac{PW(\widetilde{R}, \widetilde{C}, \widetilde{M}) - PW_{\rm c}}{\frac{s_R + s_c}{1 + \varepsilon}Q + (1 + i)^{-N}s_M} \right|$$
(148)

See fig. 16, p.37

• Horizontal intercept of the robustness curve. From eq.(52), p.17, we know:

$$PW(\widetilde{R},\widetilde{C},\widetilde{M}) = -\$1.41 \tag{149}$$

• The project nominally almost breaks even.

• Zeroing: no robustness at predicted outcome.

• Slope of the robustness curve is:

Slope
$$= -\left(\frac{s_R + s_c}{1 + \varepsilon}Q + s_M\right)^{-1}$$
 (150)

Let $\varepsilon = i = 0.1$ so Q = N = 10. $s_R = 0.05\widetilde{R}$, $s_C = 0.03\widetilde{C}$, $s_M = 0.03\widetilde{M}$. Thus:

Slope =
$$-\left(\frac{0.05 \times 5,310 + 0.03 \times 3,000}{1.1}10 + 0.03 \times 2,000\right)^{-1} = -1/3,291.82$$
 (151)

Cost of robustness: P_c must be **reduced** by \$3,291.82 in order to **increase** \hat{h} by 1 unit. • **Decision making.** We need "several" units of robustness, say $\hat{h}(PW_c) \approx 3$ to 5. E.g.

$$\hat{h}(PW_{\rm c}) = 4 \implies PW_{\rm c} = -\$13, 168.69 \tag{152}$$

Nominal PW = -\$1.41.

Reliable PW = -\$13,168.69.

Thus the incomes, R_k and M, do not reliably cover the costs, C_k and S.

Figure 16: Robustness curve, eq.148, p.36, of example 11.

10.2 Example 7, p.19, Re-Visited

Example 12 Example 7, p.19, re-visited.

§ Does the Present Worth method justify the following project,

- given uncertainty in revenue, operating and maintenance costs?
- Project definition:
 - $\circ P = initial investment =$ \$140,000.
 - \widetilde{R}_k = estimated revenue at end of kth year = $\frac{2}{3}(45,000+5,000k)$.
 - $\widetilde{C}_{=}$ estimated operating cost paid at end of *k*th year = \$10,000.
 - M = estimated maintenance cost paid at end of kth year = \$1,800.
 - $\circ T = tax$ and insurance paid at end of kth year = 0.02P = 2,800.
 - $\circ i = 0.15$ representing a MARR interest rate of 15%.
 - $\circ N = 10$ years.
- From eq.(60), p.19, the PW is:

$$PW(R,C,M) = -P + \sum_{k=1}^{N} (R_k - C_k - M_k - T_k)(1+i)^{-k}$$
(153)

• Fractional-error info-gap model for R, C and M:

$$\mathcal{U}(h) = \left\{ R, C, M : \left| \frac{R_k - \widetilde{R}_k}{s_{R,k}} \right| \le h, \left| \frac{C_k - \widetilde{C}}{s_{C,k}} \right| \le h, \left| \frac{M_k - \widetilde{M}}{s_{M,k}} \right| \le h, k = 1, \dots, N \right\}, \quad h \ge 0$$
(154)

Consider expanding uncertainty envelopes for R and C:

$$s_{x,k} = (1+\varepsilon)^{k-1} s_x, \quad x = R, \ C, \ \text{or} \ M$$
 (155)

E.g., $\varepsilon = 0.15$.

• Performance requirement:

$$PW(R,C,M) \ge PW_{c} \tag{156}$$

Robustness: greatest tolerable uncertainty:

$$\widehat{h}(PW_{c}) = \max\left\{h: \left(\min_{R,C,M\in\mathcal{U}(h)} PW(R,C,M)\right) \ge PW_{c}\right\}$$
(157)

• The inner minimum, m(h), occurs at small R_k and large C_k and M_k :

$$R_k = \widetilde{R}_k - s_{R,k}h = \widetilde{R}_k - (1+\varepsilon)^{k-1}s_Rh$$
(158)

- $C_k = \widetilde{C} + s_{C,k}h = \widetilde{C} + (1+\varepsilon)^{k-1}s_Ch$ (159)
- $M_k = \widetilde{M} + s_{M,k}h = \widetilde{M} + (1+\varepsilon)^{k-1}s_Mh$ (160)

Thus m(h) equals:

$$m(h) = -P$$

$$+ \sum_{k=1}^{N} (1+i)^{-k} \left[\widetilde{R}_{k} - (1+\varepsilon)^{k-1} s_{R}h - \widetilde{C} - (1+\varepsilon)^{k-1} s_{C}h - \widetilde{M} - (1+\varepsilon)^{k-1} s_{M}h - T_{k} \right]$$

$$= \underbrace{-P + \sum_{k=1}^{N} (1+i)^{-k} \widetilde{R}_{k} - (\widetilde{C} + \widetilde{M} + T) \sum_{k=1}^{N} (1+i)^{-k}}_{PW(\widetilde{R},\widetilde{C},\widetilde{M})}$$

$$- \underbrace{\frac{s_{R} + s_{C} + s_{M}}{1+\varepsilon} h \sum_{k=1}^{N} \left(\frac{1+\varepsilon}{1+i} \right)^{k}}_{Q}$$

$$(162)$$

$$= PW(\widetilde{R}, \widetilde{C}, \widetilde{M}) - \frac{s_R + s_C + s_M}{1 + \varepsilon} Qh$$
(163)

Evaluate Q with eq.(7), p.9, unless $\varepsilon = i$ in which case Q = N.

• Equate m(h) to PW_c and solve for h to obtain the robustness:

$$m(h) = PW_{\rm c} \implies \widehat{h}(PW_{\rm c}) = \frac{PW(\widetilde{R}, \widetilde{C}, \widetilde{M}) - PW_{\rm c}}{\frac{s_R + s_C + s_M}{1 + \varepsilon}Q}$$
(164)

See fig. 17.

Figure 17: Robustness curve, eq.164, p.38, of example 12.

• Horizontal intercept of the robustness curve. From eq.(62), p.19, we know:

$$PW(\widetilde{R},\widetilde{C},\widetilde{M}) = \$10,619.$$
(165)

• The project nominally earns \$10,619.

• Zeroing: no robustness at predicted outcome.

• Slope of the robustness curve is:

Slope
$$= -\left(\frac{s_R + s_C + s_M}{1 + \varepsilon}Q\right)^{-1}$$
 (166)

Let
$$\varepsilon = i = 0.15$$
 so $Q = N = 10$. $s_R = 0.05 \hat{R}_1$, $s_C = 0.03 \hat{C}$, $s_M = 0.03 \hat{M}$. Thus:
Slope $= -\left(\frac{0.05 \times (2/3) \times 50,000 + 0.03 \times 10,000 + 0.03 \times 1,800}{1.15}10\right)^{-1} = -1/17,571.01$ (167)

Cost of robustness: P_c must be **reduced** by \$17,571.01 in order to **increase** \hat{h} by 1 unit. • **Decision making.** We need "several" units of robustness, say $\hat{h}(PW_c) \approx 3$ to 5. E.g. Nominal PW = +\$10,619.

Reliable PW = -\$59,665.04.

Thus the incomes, R_k , do not cover the costs, C_k , T_k , M_k , and P.

- Compare examples 11 and 12, fig. 18, p.39.
 - Example 11: nominally worse but lower cost of robustness.
 - Example 12: nominally better but higher cost of robustness.
 - \circ Preference reversal at $PW_{\rm c}=-\$2,450$: Example 12 preferred for $PW_{\rm c}>-\$2,450$, but robustness very low.
 - Example 11 preferred for $PW_c < -\$2,450$.

Figure 18: Robustness curves for examples 11 and 12, illustrating preference reversal. (Transp.)

10.3 Example 8, p.21, Re-Visited

Example 13 Example 8, p.21, re-visited.

§ Problem: Is the following investment worthwhile,

given uncertainty in attaining the MARR in each period?

- $F_0 = -\$25,000 = \text{cost of new equipment.}$
- F = \$8,000 net revenue (after operating cost), $k = 1, \ldots, 5$.
- N = 5 = planning horizon.
- M = \$5,000 =market value of equipment at end of planning horizon.
- $\tilde{i} = 0.2 = 20\%$ is the **anticipated** MARR.
- From eq.(69), p.21, the anticipated FW is:

$$\widetilde{FW} = M + \sum_{k=0}^{N} (1+\widetilde{i})^{N-k} F_k$$
(169)

where $F_k = F$ for k > 0.

- We desire $\tilde{i} = 0.2$, but we may not attain this high rate of return each period.
- Define a new discount rate in the *k*th period as:

$$\beta_k = (1+i)^{N-k}, \quad k = 0, \dots, N$$
 (170)

where *i* may vary from period to period.

The anticipated value is:

$$\widetilde{\boldsymbol{\beta}}_{k} = (1+\widetilde{i})^{N-k}, \quad k = 0, \dots, N$$
(171)

• Thus the anticipated and actual FW's are:

$$\widetilde{FW} = M + \sum_{k=0}^{N} \widetilde{\beta}_k F_k$$
(172)

$$FW = M + \sum_{k=0}^{N} \beta_k F_k \tag{173}$$

• A fractional-error info-gap model for the discount rates, treating the uncertainty separately in each period, is:

$$\mathcal{U}(h) = \left\{ \beta : \ \beta_k \ge 0, \ \left| \frac{\beta_k - \widetilde{\beta}_k}{s_k} \right| \le h, \ k = 0, \dots, N \right\}, \quad h \ge 0$$
(174)

 \circ The uncertainty weights, s_k , may increase over time.

 $\circ \beta_k \geq 0$ because $i \geq -1$.

• Treating the uncertainty separately in each period is a strong approximation, and really not justified. From eq.(26), p.13, we see that β_k is related to β_{k-1} . The full analysis is much more complicated.

• Performance requirement:

$$FW(\beta) \ge FW_{\rm c} \tag{175}$$

• Robustness:

$$\widehat{h}(FW_{c}) = \max\left\{h: \left(\min_{\beta \in \mathcal{U}(h)} FW(\beta)\right) \ge FW_{c}\right\}$$
(176)

• Evaluate the inner minimum, m(h): inverse of the robustness. Occurs at:

$$\beta_0 = \tilde{\beta}_0 + s_0 h \text{ because } F_0 < 0, \quad \beta_k = \max[0, \ \tilde{\beta}_k - s_k h], \ k = 1, \dots, N$$
(177)

So:

$$m(h) = M + (\tilde{\beta}_0 + s_0 h) F_0 + F \sum_{k=1}^N \max[0, \ \tilde{\beta}_k - s_k h]$$
(178)

Define:

$$h_1 = \min_{1 \le k \le N} \frac{\tilde{\beta}_k}{s_k} \tag{179}$$

For $h \leq h_1$ we can write eq.(178) as:

$$m(h) = \underbrace{M + \sum_{k=0}^{N} \widetilde{\beta}_k F_k}_{\text{FW}} - h \underbrace{\left(-s_0 F_0 + F \sum_{k=1}^{N} s_k\right)}_{\text{FW}^*}$$
(180)

$$= \widetilde{FW} - hFW^*$$
(181)

Note that $FW^* > 0$.

• Equate eq.(181) to FW_c and solve for h to obtain **part** of the robustness curve:

$$\widehat{h}(FW_{\rm c}) = \frac{\widetilde{FW} - FW_{\rm c}}{FW^{\star}}, \quad \widetilde{FW} - h_1 FW^{\star} \le FW_{\rm c} \le \widetilde{FW}$$
(182)

• Note possibility of crossing robustness curves and preference reversal.

• For $h > h_1$, successive terms in eq.(178) drop out and the slope of the robustness curve changes.

• Question: How can we plot the entire robustness curve, without the constraint $h \le h_1$?

10.4 Info-Gap on A: Are PW and FW Robust Preferences the Same?

§ Continue example of section 8.1, p.27 (constant yearly profit), where the FW, eq.(93) p.27, is:

$$FW = \frac{(1+i)^N - 1}{i}A$$
(183)

and the uncertainty is only in A, eq.(94) p.27, is:

$$\mathcal{U}(h) = \left\{ A : \left| \frac{A - \widetilde{A}}{s_A} \right| \le h \right\}, \quad h \ge 0$$
(184)

and the performance requirement, eq.(95) p.27, is:

$$FW(A) \ge FW_{\rm c} \tag{185}$$

§ PW and FW are related by eq.(66), p.20:

$$PW(A) = (1+i)^{-N} FW(A)$$
 (186)

 \S Thus, from eqs.(185) and (186), the performance requirement for *PW* is:

$$PW(A) \ge PW_{\rm c} \tag{187}$$

where:

$$PW_{\rm c} = (1+i)^{-N} FW_{\rm c} \tag{188}$$

§ The robustness for the *FW* criterion is $\hat{h}_{fw}(FW_c)$, eq.(96) p.27, is:

$$\widehat{h}_{fw}(FW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} FW(A)\right) \ge FW_{c}\right\}$$
(189)

§ The robustness for the *PW* criterion is $\hat{h}_{pw}(PW_c)$, is defined analogously:

$$\widehat{h}_{pw}(PW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} PW(A)\right) \ge PW_{c}\right\}$$
(190)

Employing eqs.(186) and (188) we obtain:

$$\widehat{h}_{pw}(PW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} (1+i)^{-N} FW(A)\right) \ge (1+i)^{-N} FW_{c}\right\}$$
(191)

$$= \hat{h}_{fw}(FW_c) \tag{192}$$

because $(1+i)^{-N}$ cancels out in eq.(191). The values differ, but the robustnesses are equal!

§ Consider two different configurations, k = 1, 2, whose robustness functions are $\hat{h}_{pw,k}(PW_c)$ and $\hat{h}_{fw,k}(FW_c)$.

• From eq.(192) we see that:

$$\hat{h}_{pw,1}(PW_c) > \hat{h}_{pw,2}(PW_c) \quad \text{if and only if} \quad \hat{h}_{fw,1}(FW_c) > \hat{h}_{fw,2}(FW_c) \tag{193}$$

• Thus *FW* and *PW* robust preferences between the configurations are the same when *A* is the only uncertainty.

10.5 Info-Gap on *i*: Are *PW* and *FW* Robust Preferences the Same?

§ Continue example of section 8.1, p.27 (constant yearly profit), where the FW, eq.(93) p.27, is:

$$FW = \frac{(1+i)^N - 1}{i}A$$
 (194)

where i is constant but uncertain:

$$\mathcal{U}(h) = \left\{ i: \ i \ge -1, \ \left| \frac{i - \widetilde{i}}{s_i} \right| \le h \right\}, \quad h \ge 0$$
(195)

and the performance requirement, eq.(95) p.27, is:

$$FW(i) \ge FW_{\rm c} \tag{196}$$

 $\S PW$ and FW are related by eq.(66), p.20:

$$PW(i) = (1+i)^{-N} FW(i)$$
 (197)

 \S Thus, from eqs.(196) and (197), the performance requirement for PW is

$$PW(i) \ge PW_{\rm c} \tag{198}$$

where:

$$PW_{\rm c} = (1+i)^{-N} FW_{\rm c} \tag{199}$$

However, because *i* is uncertain we will write the performance requirement as:

$$PW(i) - (1+i)^{-N} FW_{c} \ge 0$$
 (200)

§ The robustness for the FW criterion is:

$$\widehat{h}_{fw}(FW_{c}) = \max\left\{h: \left(\min_{i \in \mathcal{U}(h)} FW(i)\right) \ge FW_{c}\right\}$$
(201)

We re-write this as:

$$\widehat{h}_{fw}(FW_{c}) = \max\left\{h: \left(\min_{i \in \mathcal{U}(h)} (FW(i) - FW_{c})\right) \ge 0\right\}$$
(202)

Let $m_{fw}(h)$ denote the inner minimum, which is the inverse of $\hat{h}_{fw}(FW_c)$.

§ The robustness for the PW criterion is:

$$\widehat{h}_{pw}(FW_{c}) = \max\left\{h: \left(\min_{i\in\mathcal{U}(h)}\left(\mathcal{PW}(i) - (1+i)^{-N}FW_{c}\right)\right) \ge 0\right\}$$
(203)

$$= \max\left\{h: \left(\min_{i \in \mathcal{U}(h)} (1+i)^{-N} \left(FW(i) - FW_{c}\right)\right) \ge 0\right\}$$
(204)

- Let $m_{pw}(h)$ denote the inner minimum, which is the inverse of $\hat{h}_{pw}(FW_c)$.
- Unlike the case of eq.(191), p.42, the term $(1+i)^{-N}$ does not cancel out because *i* is uncertain.
- Thus, unlike eq.(192), we cannot (yet) conclude that $\hat{h}_{fw}(FW_c)$ and $\hat{h}_{pw}(FW_c)$ are equal.
- However, because $(1+i)^{-N} > 0$, we can conclude that:

$$m_{fw}(h) \ge 0$$
 if and only if $m_{pw}(h) \ge 0$ (205)

- Define \mathcal{H}_{fw} as the set of h values in eq.(202) whose maximum is $\hat{h}_{fw}(FW_c)$.
- Define \mathcal{H}_{pw} as the set of h values in eq.(204) whose maximum is $\hat{h}_{pw}(FW_c)$.

• Eq.(205) implies that:

$$h \in \mathcal{H}_{fw}$$
 if and only if $h \in \mathcal{H}_{pw}$ (206)

which implies that:

$$\max \mathcal{H}_{fw} = \max \mathcal{H}_{pw} \tag{207}$$

which implies that:

$$\widehat{h}_{fw}(FW_c) = \widehat{h}_{pw}(FW_c) \tag{208}$$

- \S Thus *FW* and *PW* robust preferences between the configurations are the same when *i* is the only uncertainty.
- \S A different proof of eq.(208) is:
 - From the definition of \hat{h}_{fw} , eq.(202), we conclude that:

$$m_{fw}(\hat{h}_{fw}) \ge 0 \tag{209}$$

and this implies, from eq.(205), that:

$$m_{pw}(\hat{h}_{fw}) \ge 0 \tag{210}$$

From this and from the definition of \hat{h}_{pw} , eq.(204), we conclude that:

$$\hat{h}_{pw} \ge \hat{h}_{fw} \tag{211}$$

 \bullet Likewise, from the definition of $\widehat{h}_{pw},$ eq.(204), we conclude that:

$$m_{pw}(h_{pw}) \ge 0 \tag{212}$$

and this implies, from eq.(205), that:

$$m_{fw}(\hat{h}_{pw}) \ge 0 \tag{213}$$

From this and from the definition of \hat{h}_{fw} , eq.(202), we conclude that:

$$\widehat{h}_{fw} \ge \widehat{h}_{pw} \tag{214}$$

• Combining eqs.(211) and (214) we find:

$$\widehat{h}_{fw}(FW_{\rm c}) = \widehat{h}_{pw}(FW_{\rm c}) \tag{215}$$

• QED.

11 Strategic Uncertainty

\S Strategic interaction:

- Competition between protagonists.
- Willful goal-oriented behavior.
- Knowledge of each other.
- Potential for deliberate interference or deception.

11.1 Preliminary Example: 1 Allocation

\S 1 allocation:

- Allocate positive quantity F_0 at time step t = 0.
- This results in future income F_1 at time step t = 1:

$$F_1 = bF_0 \tag{216}$$

• Eq.(216) is the **system model**.

• b is the "budget effectiveness".

 $\circ \tilde{b}$ is the estimated value of *b*, where *b* is **uncertain**.

§ A fractional-error info-gap model for uncertainty in b:

$$\mathcal{U}(h) = \left\{ b: \left| \frac{b - \tilde{b}}{s_b} \right| \le h \right\}, \quad h \ge 0$$
(217)

§ Performance requirement:

$$F_1 \ge F_{1c} \tag{218}$$

§ **Definition of robustness** of allocation F_0 :

$$\widehat{h}(F_{1c}, F_0) = \max\left\{h: \left(\min_{b \in \mathcal{U}(h)} F_1\right) \ge F_{1c}\right\}$$
(219)

\S Evaluation of robustness:

- m(h) denotes inner minimum in eq.(219).
- m(h) is the inverse of $\hat{h}(F_{1c}, F_0)$ thought of as a function of F_{1c} .
- $F_0 > 0$, so m(h) occurs at $b = \tilde{b} s_b h$:

$$m(h) = (\tilde{b} - s_b h) F_0 \ge F_{1c} \implies \qquad \hat{h}(F_{1c}, F_0) = \frac{\tilde{b}F_0 - F_{1c}}{F_0 s_b}$$
(220)

or zero if this is negative.

- **Zeroing:** no robustness when $F_{1c} = F_1(\tilde{b})$.
- **Trade off:** robustness increases as requirement, F_{1c} , becomes less demanding (smaller).
- Preference reversal:
 - Consider two options:

$$(\widetilde{b}F_0)_1 < (\widetilde{b}F_0)_2$$
 Option 2 purportedly better (221)

$$\left(\frac{\widetilde{b}}{s_b}\right)_1 > \left(\frac{\widetilde{b}}{s_b}\right)_2$$
 Option 2 more uncertain (222)

- Eq.(221) compares the horizontal intercepts at $\hat{h} = 0$.
- \circ Eq.(222) compares the vertical intercepts at $F_{1c} = 0$.
- \circ Robustness curves cross one another: potential preference reversal.

11.2 1 Allocation with Strategic Uncertainty

§ Continuation of example in section 11.1.

\S 1 allocation:

- Invest positive quantity F_0 at time step t = 0.
- This results in future income F_1 at time step t = 1:

$$F_1 = bF_0 \tag{223}$$

• Eq.(216) is the system model.

 $\circ b$ is the "budget effectiveness" which is uncertain.

§ Budget effectiveness:

• "Our" budget effectiveness is influenced by a choice, c, made by "them":

$$b(c) = \tilde{b}_0 - \alpha c \tag{224}$$

where $\alpha > 0$. Suppose that **only** *c* **is uncertain.**

 $\bullet \ \alpha$ is the "aggressiveness" of their choice.

§ A fractional-error info-gap model for uncertainty in c:

$$\mathcal{U}(h) = \left\{ c : \left| \frac{c - \tilde{c}}{s_c} \right| \le h \right\}, \quad h \ge 0$$
(225)

§ Performance requirement:

$$F_1 \ge F_{1c} \tag{226}$$

§ **Definition of robustness** of allocation F_0 :

$$\widehat{h}(F_{1c}, F_0) = \max\left\{h: \left(\min_{c \in \mathcal{U}(h)} F_1\right) \ge F_{1c}\right\}$$
(227)

§ Evaluation of robustness:

- m(h) denotes inner minimum in eq.(227): the inverse of $\hat{h}(F_{1c}, F_0)$ as function of F_{1c} .
- $F_0 > 0$ and $\alpha > 0$, so m(h) occurs at $c = \tilde{c} + s_c h$:

$$m(h) = \left[\tilde{b}_0 - \alpha(\tilde{c} + s_c h)\right] F_0 \ge F_{1c} \implies$$
(228)

$$\widehat{h}(F_{1c}, F_0) = \frac{(\widetilde{b}_0 - \alpha \widetilde{c})F_0 - F_{1c}}{\alpha s_c F_0}$$
(229)

$$= \frac{F_1(\tilde{c}) - F_{1c}}{\alpha s_c F_0}$$
(230)

or zero if this is negative.

- **Zeroing** (fig. 19): no robustness when $F_{1c} = F_1(\tilde{c})$.
- Trade off (fig. 19): robustness increases as requirement, F_{1c} , becomes less demanding (smaller).

§ Preference reversal (fig. 20):

• Consider two options:

$$[(\tilde{b}_0 - \alpha \tilde{c})F_0]_1 < [(\tilde{b}_0 - \alpha \tilde{c})F_0]_2 \text{ Option 2 purportedly better}$$

$$\left(\frac{\tilde{b}_0 - \alpha \tilde{c}}{\alpha s_c}\right)_1 > \left(\frac{\tilde{b}_0 - \alpha \tilde{c}}{\alpha s_c}\right)_2 \text{ Option 2 more uncertain}$$

$$(232)$$

- A possible interpretation. "They" in option 2 are:
 - Purportedly less aggressive: $\alpha_2 < \alpha_1 \implies \text{eq.(231)}$.
 - Much less well known to "us": $s_{c2} \gg s_{c1} \implies eq.(232)$.

• Robustness curves cross one another: potential preference reversal.

11.3 2 Allocations with Strategic Uncertainty

 \S System model. 2 non-negative allocations, F_{01} and F_{02} , at time step 0:

$$F_{11} = b_1 F_{01} \tag{233}$$

$$F_{12} = b_2 F_{02} \tag{234}$$

§ Budget constraint:

$$F_{01} + F_{02} = F_{\max}, \quad F_{0k} \ge 0, \quad k = 1, 2$$
 (235)

§ Performance requirement:

$$F_{11} + F_{12} \ge F_{1c} \tag{236}$$

§ Budget effectiveness:

• "Our" budget effectiveness is influenced by choices, c_k , made by "them":

$$b_k(c) = \tilde{b}_{0k} - \alpha_k c_k, \quad k = 1, 2$$
 (237)

where $\alpha_k > 0$. Suppose that only c_1 and c_2 are uncertain, with estimates \tilde{c}_1 and \tilde{c}_2 .

§ Purported optimal allocation, assuming no uncertainty:

- Aim to maximize $F_{11} + F_{12}$.
- Put all funds on better anticipated investment:

If:
$$b_k(\tilde{c}_k) > b_j(\tilde{c}_j)$$
 then: $F_{0k} = F_{\max}$ and $F_{0j} = 0$ (238)

§ A fractional-error info-gap model for uncertainty in c:

$$\mathcal{U}(h) = \left\{ c: \left| \frac{c_k - \tilde{c}_k}{s_k} \right| \le h, \quad k = 1, \ 2 \right\}, \quad h \ge 0$$
(239)

§ **Definition of robustness** of allocation F_0 :

$$\hat{h}(F_{1c}, F_0) = \max\left\{h: \left(\min_{c \in \mathcal{U}(h)} (F_{11} + F_{12})\right) \ge F_{1c}\right\}$$
 (240)

§ Evaluation of robustness:

- m(h) denotes inner minimum in eq.(240): the inverse of $\hat{h}(F_{1c}, F_0)$ as function of F_{1c} .
- $F_{0k} \ge 0$ and $\alpha_k > 0$, so m(h) occurs at $c_k = \tilde{c}_k + s_k h$, k = 1, 2:

$$m(h) = \sum_{k=1}^{2} \left[\tilde{b}_{0k} - \alpha_k (\tilde{c}_k + s_k h) \right] F_{0k}$$
(241)

$$= \sum_{k=1}^{2} \left[\widetilde{b}_{0k} - \alpha_k \widetilde{c}_k \right] F_{0k} - h \sum_{k=1}^{2} \alpha_k s_k F_{0k}$$
(242)

$$F_1(\tilde{c}) = \tilde{b}^T F_0 \qquad \sigma^T F_0$$

$$= F_1(\tilde{c}) - h \sigma^T F_0 \qquad (243)$$

which defines the vectors \tilde{b} , F_0 and σ .

• Equate m(h) to F_{1c} and solve for h to obtain the robustness:

$$m(h) = F_{1c} \implies \hat{h}(F_{1c}, F_0) = \frac{F_1(\tilde{c}) - F_{1c}}{\sigma^T F_0}$$
(244)

$$= \frac{\widetilde{b}^T F_0 - F_{1c}}{\sigma^T F_0}$$
(245)

or zero if this is negative.

- **Zeroing** (fig. 21): no robustness when $F_{1c} = F_1(\tilde{c})$.
- Trade off (fig. 21): robustness increases as requirement, F_{1c}, becomes less demanding (smaller).

§ **Two extreme allocations,** the purported best and worst allocations:

• Suppose $b_1(\tilde{c}_1) > b_2(\tilde{c}_2)$, so:

 $\circ F_{01} = F_{\text{max}}, F_{02} = 0$ is purportedly best:

$$\hat{h}(F_{01} = F_{\max}) = \frac{b_1(\tilde{c}_1)F_{\max} - F_{1c}}{\sigma_1 F_{\max}}$$
(246)

 $\circ F_{01} = 0$, $F_{02} = F_{max}$ is purportedly worst:

$$\hat{h}(F_{02} = F_{\max}) = \frac{b_2(\tilde{c}_2)F_{\max} - F_{1c}}{\sigma_2 F_{\max}}$$
(247)

• Also suppose: $\frac{\widetilde{b}_1}{\sigma_1} < \frac{\widetilde{b}_2}{\sigma_2}$ so first option is **more uncertain**.

• Preference reversal, fig. 22:

The purported best allocation is **less robust** than

the purported worst allocation for some $F_{\rm max}\mbox{'s.}$

• The most robust option is still allocation to only one asset, but not necessarily to the nominally optimal asset.

11.4 Asymmetric Information and Strategic Uncertainty: Employment

§ Employer's problem:

- Employer wants to hire an employee.
- Employer must offer a salary to the employee, who can refuse the offer. No negotiation.
- Employer does not know the true economic value, or the refusal price, of the employee.

\S Employer's NPV:

- C = pay at end of each of N periods offered to employee.
- A = uncertain income, at end of each of N periods, to employer from employee's work.
- Employer's NPV, adapting eq.(45), p.17:

$$PW = \sum_{k=1}^{N} (1+i)^{-k} (A-C)$$
(248)

$$= \underbrace{\frac{1 - (1 + i)^{-N}}{i}}_{\mathcal{I}} (A - C)$$
(249)

where eq.(249) employs eq.(9), p.9.

• The employer's PW requirement:

$$PW \ge PW_{c}$$
 (250)

§ Uncertainty about A:

Asymmetric information:

- \circ The employee knows things about himself that the employer does not know.
- The prospective employee states that his work will bring in \tilde{A} each period.
- The employee thinks this is an over-estimate but does not know by how much.
- The employer adopts a fractional-error info-gap model:

$$\mathcal{U}(h) = \left\{ A: \ 0 \le \frac{\widetilde{A} - A}{\widetilde{A}} \le h \right\}, \quad h \ge 0$$
(251)

Note asymmetrical uncertainty resulting from asymmetrical information.

§ Employer's offered contract and employee's potential refusal:

- The employer will offer to pay the employee C per period.
- The employee will refuse if this is less that his refusal cost, $C_{\rm r}$.
- The employer wants to choose C so probability of refusal is less than ε , where $\varepsilon \leq \frac{1}{2}$.
- The employer doesn't know employee's value of $C_{\rm r}$ and only has a guess of pdf of $C_{\rm r}$.
- Once again: asymmetric information.
- The employer's estimate of the pdf of C_r is $\tilde{p}(C_r)$, which is $\mathcal{N}(\mu, \sigma^2)$.
- Employer chooses $\mu < \widetilde{A}$ to reflect asymmetrical information.
- The employer's info-gap model for uncertainty in this pdf is:

$$\mathcal{V}(h) = \left\{ p(C_{\mathrm{r}}) : \ p(C_{\mathrm{r}}) \ge 0, \ \int_{-\infty}^{\infty} p(C_{\mathrm{r}}) \,\mathrm{d}C_{\mathrm{r}} = 1, \ \left| \frac{p(C_{\mathrm{r}}) - \widetilde{p}(C_{\mathrm{r}})}{\widetilde{p}(C_{\mathrm{r}})} \right| \le h \right\}, \quad h \ge 0$$
(252)

• The probability of refusal by the employee, of the offered value of C, is (see fig. 23, 51):

$$P_{\rm ref}(C|p) = \mathsf{Prob}(C_{\rm r} \ge C) = \int_C^\infty p(C_{\rm r}) \,\mathrm{d}C_{\rm r}$$
(253)

Figure 23: Probability of refusal by the employee, eq.(253).

• The employer's requirement regarding employee refusal, where $\varepsilon \leq \frac{1}{2}$, is:

$$P_{\rm ref}(C|p) \le \varepsilon$$
 (254)

\S Definition of the robustness:

• Overall robustness:

$$\widehat{h}(C, PW_{c}, \varepsilon) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} \mathcal{PW}(C, A)\right) \ge PW_{c}, \left(\max_{p \in \mathcal{V}(h)} P_{ref}(C|p)\right) \le \varepsilon\right\}$$
(255)

- This can be expressed in terms of two sub-robustnesses.
- Robustness of PW:

$$\widehat{h}_{pw}(C, PW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} \mathcal{PW}(C, A)\right) \ge PW_{c}\right\}$$
(256)

• Robustness of employee refusal:

$$\widehat{h}_{\rm ref}(C,\varepsilon) = \max\left\{h: \left(\max_{p\in\mathcal{V}(h)} P_{\rm ref}(C|p)\right) \le \varepsilon\right\}$$
(257)

• The overall robustness can be expressed:

$$\hat{h}(C, PW_{c}, \varepsilon) = \min\left[\hat{h}_{pw}(C, PW_{c}), \ \hat{h}_{ref}(C, \varepsilon)\right]$$
(258)

• Why minimum in eq.(258)?

• Both performance requirements, eqs.(250) and (254), must be satisfied, so the overall robustness is the lower of the two sub-robustnesses.

§ Evaluating $\hat{h}_{pw}(C, PW_c)$:

- Let $m_{\rm pw}(h)$ denote the inner minimum in eq.(256).
- $m_{\rm pw}(h)$ is the inverse of $\hat{h}_{\rm pw}(C, PW_{\rm c})$ thought of as a function of $PW_{\rm c}$.
- Eq.(249): $PW = (A C)\mathcal{I}$. Thus $m_{pw}(h)$ occurs for $A = (1 h)\widetilde{A}$:

$$m_{\rm pw}(h) = \left[(1-h)\widetilde{A} - C \right] \mathcal{I} \ge PW_{\rm c} \implies$$
 (259)

$$\widehat{h}_{pw}(C, PW_c) = \frac{(\widetilde{A} - C)\mathcal{I} - PW_c}{\widetilde{A}\mathcal{I}}$$
(260)

$$= \boxed{\frac{PW(\tilde{A}) - PW_{c}}{\tilde{A}\mathcal{I}}}$$
(261)

or zero if this is negative.

§ Evaluating $\hat{h}_{ref}(C, \varepsilon)$:

- Let $m_{\rm ref}(h)$ denote the inner maximum in eq.(257).
- $m_{\rm ref}(h)$ is the inverse of $\hat{h}_{\rm ref}(C,\varepsilon)$ thought of as a function of ε .

• Recall: $\varepsilon \leq \frac{1}{2}$.

• Thus, we must choose *C* to be **no less than median** of $\tilde{p}(C_r)$ because we require (see fig. 24, p.52):

$$P_{\rm ref}(C|\tilde{p}) = \int_C^\infty \tilde{p}(C_{\rm r}) \, \mathrm{d}C_{\rm r} \le \varepsilon \le \frac{1}{2}$$
(262)

Figure 24: Probability of refusal by the employee, eq.(253).

• Eq.(253): $P_{\text{ref}}(C|p) = \text{Prob}(C_{\text{r}} \ge C) = \int_{C}^{\infty} p(C_{\text{r}}) \, \mathrm{d}C_{\text{r}}$. For $h \le 1$, $m_{\text{ref}}(h)$ occurs for:

$$p(C_{\rm r}) = \begin{cases} (1+h)\widetilde{p}(C_{\rm r}), & C_{\rm r} \ge C\\ (1-h)\widetilde{p}(C_{\rm r}), & \text{ for part of } C_{\rm r} < C \text{ to normalize } p(C_{\rm r}) \\ \widetilde{p}(C_{\rm r}), & \text{ for remainder of } C_{\rm r} < C \end{cases}$$
(263)

Why don't we care what "part of $C_r < C$ " in the middle line of eq.(263)?

• Thus, for $h \leq 1$:

$$m_{\rm ref}(h) = \int_C^\infty (1+h)\widetilde{p}(C_{\rm r}) \,\mathrm{d}C_{\rm r}$$
(264)

$$= (1+h)\operatorname{Prob}(C_{\mathrm{r}} \ge C|\widetilde{p}) = (1+h)\operatorname{Prob}\left(\frac{C_{\mathrm{r}}-\mu}{\sigma} \ge \frac{C-\mu}{\sigma}\Big|\widetilde{p}\right)$$
(265)

$$= (1+h)\left[1 - \Phi\left(\frac{C-\mu}{\sigma}\right)\right] \le \varepsilon \quad \left(\text{because } \frac{C_{\rm r}-\mu}{\sigma} \sim \mathcal{N}(0,1)\right) \quad (266)$$

$$\implies \widehat{h}_{ref}(C,\varepsilon) = \frac{\varepsilon}{1 - \Phi\left(\frac{C-\mu}{\sigma}\right)} - 1$$
for $1 - \Phi\left(\frac{C-\mu}{\sigma}\right) \le \varepsilon \le 2\left[1 - \Phi\left(\frac{C-\mu}{\sigma}\right)\right]$
(267)

• Note that $\hat{h}_{ref}(C,\varepsilon) \leq 1$ for the ε -range indicated, so assumption that $h \leq 1$ is satisfied.

 \circ We have not derived \hat{h}_{ref} for ε outside of this range.

§ Numerical example, fig. 25, p.53:

- Potential employee states his "value" as $\tilde{A} = 1.2$.
- Employer offers C = 1.
- Other parameters in figure.
- Increasing solid red curve in fig. 25: $\hat{h}_{ref}(C,\varepsilon)$.
- Decreasing solid blue curve in fig. 25: $\hat{h}_{pw}(C,\varepsilon)$.
- Overall robustness, $\hat{h}(C, PW_c, \varepsilon) = \min \left[\hat{h}_{pw}(C, PW_c), \ \hat{h}_{ref}(C, \varepsilon) \right]$, from eq.(258).
- Recall that $\hat{h}(C, PW_c, \varepsilon)$ varies over the plane, ε vs PW_c .
- Suppose $\varepsilon = 0.5$ and $PW_c = 1$, then $\hat{h} = \hat{h}_{pw} \approx 0.3$ (blue). Pretty low robustness.

§ Numerical example, fig. 26, p.53:

- Employer offers lower salary: C = 0.9. Other parameters the same.
- $\hat{h}_{pw}(C,\varepsilon)$ increases: blue solid to green dash. Does this make sense? Why?
- $\widehat{h}_{ref}(C,\varepsilon)$ decreases: red solid to turquoise dash. Does this make sense? Why?

• Suppose $\varepsilon = 0.5$ and $PW_c = 1$, then $\hat{h} = \hat{h}_{pw} \approx 1.2$ (dash green). Better than before. Why? Robustness for refusal decreased, but robustness for PW is smaller, and increased more.

Figure 25: Sub-robustness curves, eqs.(261) (blue) and (267) (red). C = 1.0 (Transp.)

Figure 26: Sub-robustness curves, eqs.(261) (blue, green) and (267) (red, cyan). Solid: C = 1.0. Dash: C = 0.9 (Transp.)

12 Opportuneness: The Other Side of Uncertainty

12.1 Opportuneness and Uncertain Constant Yearly Profit, A

\S Return to example in section 8, p.27:

- Future worth of constant profit, eq.(12), p.9:
 - $\circ A =$ profit at end of each period.
 - $\circ i =$ reinvest at profit rate i.
 - $\circ N =$ number of periods.
 - The future worth is:

$$FW = \underbrace{\frac{(1+i)^N - 1}{i}}_{\mathcal{I}} A \tag{268}$$

- Uncertainty: the constant end-of-period profit, A, is uncertain.
 - $\circ \tilde{A}$ = known estimated profit.
 - $\circ A =$ unknown true profit.
 - $\circ s_A =$ error of estimate.
 - Fractional-error info-gap model:

$$\mathcal{U}(h) = \left\{ A : \left| \frac{A - \widetilde{A}}{s_A} \right| \le h \right\}, \quad h \ge 0$$
(269)

Robustness:

$$\widehat{h}(FW_{c}) = \max\left\{h: \left(\min_{A \in \mathcal{U}(h)} FW(A)\right) \ge FW_{c}\right\}$$
(270)

$$= \frac{1}{s_A} \left(\tilde{A} - \frac{FW_c}{\mathcal{I}} \right)$$
(271)

§ Opportuneness:

• FW_w is a wonderful windfall value of *FW*:

$$FW_{\rm w} \ge FW(\widetilde{A}) \ge FW_{\rm c}$$
 (272)

- Opportuneness:
 - Uncertainty is good: The potential for better-than-expected outcome.
 - Distinct from robustness for which uncertainty is bad.
 - \circ The investment is **opportune** if FW_w is possible at low uncertainty.
 - o Investment 1 is more opportune than investment 2 if
 - $FW_{\rm w}$ is possible at lower uncertainty with 1 than with 2.
- Definition of opportuneness function:

$$\widehat{\beta}(FW_{w}) = \min\left\{h: \left(\max_{A \in \mathcal{U}(h)} FW(A)\right) \ge FW_{w}\right\}$$
(273)

- Compare with robustness, eq.(270): exchange of min and max operators.
- Meaning of opportuneness function: small β̂ is good; large β̂ is bad:
 β̂ is immunity against windfall.
- Meaning of robustness function: small \hat{h} is bad; large \hat{h} is good:
 - \hat{h} is immunity against failure.

\S Evaluating the opportuneness.

• Aspiration exceeds anticipation:

$$FW_{\rm w} > FW(\widetilde{A})$$
 (274)

Thus we need favorable surprise to enable $FW_{\rm w}$.

- Question: What is opportuneness for $FW_w \leq FW(\widetilde{A})$?
- M(h) is inner maximum in eq.(273): the inverse of $\hat{\beta}(FW_{\rm w})$.
- M(h) occurs for $A = \widetilde{A} + s_A h$:

$$M(h) = \mathcal{I}(\tilde{A} + s_A h) \ge FW_{w} \implies \widehat{\beta}(FW_{w}) = \frac{1}{s_A} \left(\frac{FW_{w}}{\mathcal{I}} - \tilde{A}\right)$$
(275)

- Zeroing: No uncertainty needed to enable the anticipated value: $FW_w = FW(\widetilde{A})$.
- Trade off: Opportuneness gets worse ($\hat{\beta}$ bigger) as aspiration increases (FW_w bigger).

§ Immunity functions: sympathetic or antagonistic:

• Combine eqs.(271) and (275):

$$\hat{h} = -\hat{\beta} + \frac{FW_{\rm w} - FW_{\rm c}}{s_A \mathcal{I}}$$
(276)

Note: 2nd term on right is non-negative: $FW_{\rm w} \ge FW_{\rm c}$.

Robustness and opportuneness are sympathetic wrt choice of *A*:
 Any change in *A* that improves robustness also improves opportuneness:

$$\frac{\partial \hat{h}}{\partial \tilde{A}} > 0$$
 if and only if $\frac{\partial \hat{\beta}}{\partial \tilde{A}} < 0$ (277)

Does this make sense? Why?

Robustness and opportuneness are antagonistic wrt choice of s_A:
 Any change in s_A that improves robustness worsens opportuneness:

$$\frac{\partial \hat{h}}{\partial s_A} < 0$$
 if and only if $\frac{\partial \hat{\beta}}{\partial s_A} < 0$ (278)

Does this make sense? Why?

• Robustness and opportuneness are sympathetic wrt choice of x if and only if:

$$\frac{\partial \hat{h}}{\partial x} \frac{\partial \hat{\beta}}{\partial x} < 0 \tag{279}$$

12.2 Robustness and Opportuneness: Sellers and Buyers

§ Buyers, sellers and diminishing marginal utility:¹⁸

- Ed has lots of oranges. He eats oranges all day. He would love an apple. Ed's marginal utility for oranges is low and for apples is high.
- Ned has lots of apples. He eats apples all day. He would love an orange. Ned's marginal utility for apples is low and for oranges is high.
- When Ed and Ned meet they rapidly make a deal to exchanges some apples and oranges.

\S This marginal utility explanation does not explain all transactions,

especially exchanges of monetary instruments: money for money.

§ Continue example in section 12.1, p.54.

- § Ed wants to own an investment with confidence for moderate earnings.
 - Ed's critical FW is $FW_{c,ed}$.
 - The robustness, eq.(271), p.54, is (see fig. 27, p.56):

$$\widehat{h}(FW_{\rm c}) = \frac{1}{s_A} \left(\widetilde{A} - \frac{FW_{\rm c}}{\mathcal{I}} \right)$$
(280)

• The robustness—immunity against failure—for $FW_{\rm c,ed}$ is low so Ed wants to sell.

§ Ned wants to own an investment with potential for high earnings.

- \bullet Ned's windfall FW is FW_{\rm w,ned}.
- The opportuneness function, eq.(275), p.55, is (see fig. 27, p.56):

$$\widehat{\beta}(FW_{\rm w}) = \frac{1}{s_A} \left(\frac{FW_{\rm w}}{\mathcal{I}} - \widetilde{A} \right)$$
(281)

• The opportuneness—immunity against windfall— for $FW_{\rm w,ned}$ is low so Ed wants to buy.

§ Ed, meet Ned. Ned, meet Ed. Let's make a deal!

12.3 Robustness Indifference and Its Opportuneness Resolution

§ Continue example of section 12.2, p.56.

\S The robustness and opportuneness functions are:

$$\widehat{h}(FW_{\rm c}) = \frac{1}{s_A} \left(\widetilde{A} - \frac{FW_{\rm c}}{\mathcal{I}} \right)$$
(282)

$$\widehat{\beta}(FW_{\rm w}) = \frac{1}{s_A} \left(\frac{FW_{\rm w}}{\mathcal{I}} - \widetilde{A} \right)$$
(283)

 \S Choice between two plans, \widetilde{A} , s_A and \widetilde{A}' , s'_A , where:

$$\widetilde{A} < \widetilde{A}', \quad \frac{\widetilde{A}}{s_A} > \frac{\widetilde{A}'}{s'_A}$$
 (284)

- The left relation implies that the 'prime' option is purportedly better.
- The right relation implies that the 'prime' option is more uncertain.
- The robustness curves **cross** at FW_{\times} (see fig. 28): Robust indifference between plans for $FW_{c} \approx FW_{\times}$.
- The opportuneness curves **do not cross** (see fig. 28): Opportuneness preference for plan \tilde{A}', s'_A .
- Opportuneness can resolve a robust indifference.

