Lecture Notes on

Time-Value of Money

Yakov Ben-Haim
Yitzhak Moda'i Chair in Technology and Economics
Faculty of Mechanical Engineering
Technion - Israel Institute of Technology
Haifa 32000 Israel
yakov@technion.ac.il
http://info-gap.com http://www.technion.ac.il/yakov

Source material:

- DeGarmo, E. Paul, William G. Sullivan, James A. Bontadelli and Elin M. Wicks, 1997, Engineering Economy. 10th ed., chapters 3-4, Prentice-Hall, Upper Saddle River, NJ.
- Ben-Haim, Yakov, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.
- Ben-Haim, Yakov, 2006, Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edition, Academic Press, London.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

I Time-Value of Money 4
1 Time, Money and Engineering Design 4
2 Simple Interest 5
3 Compound Interest 6
4 Interest Formulas for Present and Future Equivalent Values 7
4.1 Single Loan or Investment 7
4.2 Constant Loan or Investment 8
4.2.1 Find F given A, N and i 9
4.2.2 Find P given A, N and i 10
4.2.3 Find A given P, N and i 11
4.3 Variable Loan or Investment 12
4.4 Variable Interest, Loan or Investment 13
4.5 Compounding More Often Than Once per Year 14
II Applications of Time-Money Relationships 16
5 Present Worth Method 17
6 Future Worth Method 20

[^0]III Implications of Uncertainty 22
7 Uncertain Profit Rate, i, of a Single Investment, P 22
7.1 Uncertainty 23
7.2 Robustness 24
7.3 Decision Making and the Innovation Dilemma 26
8 Uncertain Constant Yearly Profit, A 27
8.1 Info-Gap on A 27
8.2 PDF of A 29
8.3 Info-Gap on PDF of A 31
9 Uncertain Return, i, on Uncertain Constant Yearly Profit, A 33
10 Present and Future Worth Methods with Uncertainty 35
10.1 Example 5, p.17, Re-Visited 35
10.2 Example 7, p.19, Re-Visited 37
10.3 Example 8, p.21, Re-Visited 40
10.4 Info-Gap on A : Are $P W$ and $F W$ Robust Preferences the Same? 42
10.5 Info-Gap on i : Are PW and FW Robust Preferences the Same? 43
11 Strategic Uncertainty 45
11.1 Preliminary Example: 1 Allocation 45
11.21 Allocation with Strategic Uncertainty 46
11.3 2 Allocations with Strategic Uncertainty 48
11.4 Asymmetric Information and Strategic Uncertainty: Employment 50
12 Opportuneness: The Other Side of Uncertainty 54
12.1 Opportuneness and Uncertain Constant Yearly Profit, A 54
12.2 Robustness and Opportuneness: Sellers and Buyers 56
12.3 Robustness Indifference and Its Opportuneness Resolution 57

§ The problem:

- Given several different design concepts, each technologically acceptable.
- Select one option or prioritize all the options.
§ The economic approach:
- Treat each option as a capital investment.
- Consider:
- Associated expenditures for implementation.
- Revenues or savings over time.
- Attractive or acceptable return on investment.
- Cash flows over time: time-value of money.
§ Why should the engineer study economics?
- Cost and revenue are unavoidable in practical engineering in industry, government, etc.
- The engineer must be able to communicate and collaborate with the economist:
- Economic decisions depend on engineering considerations.
- Engineering decisions depend on economic considerations.
- Technology influences society, and society influences technology:

Engineering is both a technical and a social science. ${ }^{1}$
§ We will deal with design-prioritization in part II, p.16.
§ We first study the time-value of money in part I on p.4.
§ In part III we will study the implications of uncertainty.

[^1]
Part I
 Time-Value of Money

1 Time, Money and Engineering Design

§ Design problem: discrete options.

- Goal: design system for 10-year operation.
- Option 1: High quality, expensive 10-year components.
- Option 2: Medium quality, less expensive 5-year components. Re-purchase after 5 years.
- Which design preferable?
- What are the considerations?
- How to compare costs?

§ Design problem: continuous options.

- Goal: design system for 10-year operation.
- Many options, allowing continuous trade off between price and life.
- Which design preferable?
- What are the considerations?
- How to compare costs?

§ Repair options.

- The production system is broken.
- When functional, the system produces goods worth \$500,000 per year.
- Various repair technologies have different costs and projected lifetimes.
- How much can we spend on repair that would return the system to N years of production?
- Which repair technology should we use?
- Should we look for other repair technologies?

2 Simple Interest

§ Primary source: DeGarmo et al, p. 65.
§ Interest: "Money paid for the use of money lent (the principal), or for forbearance of a debt, according to a fixed ratio". ${ }^{2}$
§ Biblical prohibition: "If you lend money to any of my people with you that is poor, you shall not be to him as a creditor; nor shall you lay upon him interest." ${ }^{3}$ (transparency)
§ Simple interest: ${ }^{4}$ The total amount of interest paid is linearly proportional to:

- Initial loan, P, (the principal). ${ }^{5}$
- The number of periods, N.
\S Interest rate, i :
- Proportionality constant.
- E.g., 10\% interest: $i=0.1$.
\S Total interest payment, I, on principal P for N periods at interest rate i :

$$
\begin{equation*}
I=P N i \tag{1}
\end{equation*}
$$

Example: $P=\$ 200, N=5$ periods (e.g. years), $i=0.1$:

$$
\begin{equation*}
I=\$ 200 \times 5 \times 0.1=\$ 100 \tag{2}
\end{equation*}
$$

§ Total repayment:

$$
\begin{equation*}
C=(1+N i) P \tag{3}
\end{equation*}
$$

\S We will not use simple interest because it is not used in practice.

[^2]
3 Compound Interest

\S Primary source: DeGarmo et al, p.66.

\S Compound interest: ${ }^{6}$ The interest charge for any period is linearly proportional to both:

- Remaining principal, and
- Accumulated interest up to beginning of that period.

Example 14 different compound-interest schemes. See table 1

- $\$ 8,000$ principal at 10% annually for 4 years.
- Plan 1: At end of each year pay $\$ 2,000$ plus interest due.
- Plan 2: Pay interest due at end of each year, and pay principal at end of 4 years.
- Plan 3: Pay in 4 equal end-of-year payments.
- Plan 4: Pay principal and interest in one payment at end of 4 years.

Year	Amount owed at beginning of year	Interest accrued for year	Principal payment	Total end-of-year payment
Plan 1:	8,000	800	2,000	2,800
1	6,000	600	2,000	2,600
2	4,000	400	2,000	2,400
3	2,000	200	2,000	2,200
4				
Total:	$20,000 \$$-yr	2,000	8,000	10,000
Plan 2:	8,000	800	0	800
1	8,000	800	0	800
2	8,000	800	0	800
3	8,000	800	8,000	8,800
4	8,000	800	1,724	2,524
Total:	$32,000 \$$-yr	3,200	8,000	11,200
Plan 3:	6,276	628	1,896	2,524
1	4,380	438	2,086	2,524
2	2,294	230	2,294	2,524
3	$20,960 \$-\mathrm{yr}$	2,096	8,000	10,096
4	8,000			
Total:	800	0	0	
Plan 4:	8,800	880	0	0
1	9,680	968	0	0
2	10,648	1,065	8,000	11,713
3	$37,130 \$-y r$	3,713	8,000	11,713
4				
Total:				

Table 1: 4 repayment plans. $\$ 8,000$ principal, 10% annual interest, 4 years. (Transp.)

[^3]
4 Interest Formulas for Present and Future Equivalent Values

4.1 Single Loan or Investment

§ Primary source: DeGarmo et al, pp.73-77.

Figure 1: Cash flow program, section 4.1.
§ Cash flow program, fig. 1:

- Single present sum P : loan or investment at time $t=0$.
- Single future sum F.
- N periods.
- i : Interest rate (for loan) or profit rate (for investment).
\S Find F given P :
- After 1 period: $F=(1+i) P$.
- After 2 periods: $F=(1+i)[(1+i) P]=(1+i)^{2} P$.
- After N periods:

$$
\begin{equation*}
F=(1+i)^{N} P \tag{4}
\end{equation*}
$$

\S Find P given F. Invert eq.(4):

$$
\begin{equation*}
P=\frac{1}{(1+i)^{N}} F \tag{5}
\end{equation*}
$$

4.2 Constant Loan or Investment

§ Primary source: DeGarmo et al, pp.78-85.

Figure 2: Cash flow program, section 4.2.
§ Cash flow program, fig. 2:

- A: An annual loan, investment or profit, occurring at the end of each period.
(Sometimes called annuity) ${ }^{7}$
- i : Interest rate (for loan) or profit rate (for investment).
- N periods.
§ Equivalent present, annual and future sums:
- Given A, N and i, find:
- Future equivalent sum F occurring at the same time as the last A, at end of period N. (Section 4.2.1, p.9.)
- Present equivalent sum P : loan or investment occurring 1 period before first constant amount A.
(Section 4.2.2, p.10.)
- Given P, N and i, find:
\circ Annual equivalent sum A occuring at end of each period.
(Section 4.2.3, p.11.)

[^4]
4.2.1 Find F given A, N and i

\S Motivation:

- Make N annual deposits of A dollars at end of each year.
- Annual interest is i.
- How much can be withdrawn at end of year N ?

\S Motivation:

- Earn N annual profits of A dollars at end of each year.
- Re-invest at profit rate i.
- How much can be withdrawn at end of year N ?
§ Sums of a geometric series that we will use frequently, for $x \neq 1$:

$$
\begin{align*}
& \sum_{n=0}^{N-1} x^{n}=\frac{x^{N}-1}{x-1} \tag{6}\\
& \sum_{n=1}^{N-1} x^{n}=\frac{x^{N}-x}{x-1} \tag{7}
\end{align*}
$$

- Special case: $x=\frac{1}{1+i}$:

$$
\begin{align*}
& \sum_{n=0}^{N-1} \frac{1}{(1+i)^{n}}=\frac{1-\frac{1}{(1+i)^{N}}}{1-\frac{1}{1+i}}=\frac{1+i-(1+i)^{-(N-1)}}{i} \tag{8}\\
& \sum_{n=1}^{N-1} \frac{1}{(1+i)^{n}}=\frac{\frac{1}{1+i}-\frac{1}{(1+i)^{N}}}{1-\frac{1}{1+i}}=\frac{1-(1+i)^{-(N-1)}}{i} \tag{9}
\end{align*}
$$

\S Find F given A, N and i : Value of annuity plus interest after N periods.

- From N th period: $(1+i)^{0} A$. (Because last A at end of last period.)
- From $(N-1)$ th period: $(1+i)^{0}(1+i) A=(1+i)^{1} A$.
- From $(N-2)$ th period: $(1+i)^{0}(1+i)(1+i) A=(1+i)^{2} A$.
- From $(N-n)$ th period: $(1+i)^{n} A, \quad n=0, \ldots, N-1$.
- After all N periods:

$$
\begin{align*}
F & =(1+i)^{0} A+(1+i)^{1} A+(1+i)^{2} A+\cdots+(1+i)^{N-1} A \tag{10}\\
& =\sum_{n=0}^{N-1}(1+i)^{n} A \tag{11}\\
& =\frac{(1+i)^{N}-1}{i} A \tag{12}
\end{align*}
$$

§ Example of eq.(12), table 2, p. 10 (transparency):

- Column 3: ratio of final worth, F, to annuity, A. Why does F / A increase as i increases?
- Column 4: effect of compound interest: $F>N A$. Note highly non-linear effect at long time.

N	i	F / A	$F / N A$
5	0.03	5.3091	1.0618
5	0.1	6.1051	1.2210
10	0.03	11.4639	1.1464
10	0.1	15.9374	1.5937
30	0.03	47.5754	1.5858
30	0.1	164.4940	5.4831

Table 2: Example of eq.(12). (Transp.)

4.2.2 Find P given A, N and i

§ Motivation:

- Repair of a machine now would increase output by $\$ 20,000$ at end of each year for 5 years.
- We can take a loan now at 7% interest to finance the repair.
- How large a loan can we take if we must cover it from accumulated increased earning after 5 years?
\S Repayment of loan, P, after N years at interest i, from eq.(4), p.7:

$$
\begin{equation*}
F=(1+i)^{N} P \tag{13}
\end{equation*}
$$

\S The loan, P, must be equivalent to the annuity, A. Hence:
Eq.(13) must equal accumulated value of increased yearly earnings, A, eq.(12), p.9:

$$
\begin{equation*}
F=\frac{(1+i)^{N}-1}{i} A \tag{14}
\end{equation*}
$$

\S Equate eqs.(13) and (14) and solve for P :

$$
\begin{equation*}
P=\frac{(1+i)^{N}-1}{i(1+i)^{N}} A=\frac{1-(1+i)^{-N}}{i} A \tag{15}
\end{equation*}
$$

- This is the largest loan we can cover from accumulated earnings.
- This is the present (starting time, $t=0$) equivalent value of the annuity.
§ Example of eq.(15), table 3 (transparency):
- Column 3: ratio of loan, P, to annuity, A. Why does P / A decrease as i increases, unlike table 2?
- Column 4: effect of compound interest: $P<N A$.

N	i	P / A	$P / N A$
5	0.03	4.580	0.916
5	0.1	3.791	0.758
10	0.03	8.530	0.853
10	0.1	6.145	0.615
30	0.03	19.600	0.655
30	0.1	9.427	0.314

Table 3: Example of eq.(15). (Transp.)

4.2.3 Find A given P, N and i

$\S F$ and A are related by eq.(12), p.9:

$$
\begin{equation*}
F=\frac{(1+i)^{N}-1}{i} A \tag{16}
\end{equation*}
$$

- Thus:

$$
\begin{equation*}
A=\frac{i}{(1+i)^{N}-1} F \tag{17}
\end{equation*}
$$

- F and P are related by eq.(4), p.7:

$$
\begin{equation*}
F=(1+i)^{N} P \tag{18}
\end{equation*}
$$

- Thus A and P are related by:

$$
\begin{equation*}
A=\frac{i(1+i)^{N}}{(1+i)^{N}-1} P \tag{19}
\end{equation*}
$$

Example 2 We can now explain Plan 3 in table 1, p.6.

- The principal is $P=8,000$.
- The interest rate is $i=0.1$.
- The number of periods is $N=4$.
- Thus the equivalent equal annual payments, A, are from eq.(19):

$$
\begin{equation*}
A=\frac{0.1 \times 1.1^{4}}{1.1^{4}-1} 8,000=0.3154708 \times 8,000=2,523.77 \tag{20}
\end{equation*}
$$

4.3 Variable Loan or Investment

§ Cash flow program:

- $A_{1}, A_{2}, \ldots, A_{N}$: Sequence of annual loans or investments, occurring at the end of each period.
- i : Interest rate (for loan) or profit rate (for investment).
- N periods.

Future equivalent sum: Given $A_{1}, A_{2}, \ldots, A_{N}$ and i, find:

- Future equivalent sum F occurring at the same time as A_{N}.
- Generalization of eq.(10) on p.9:
- From N th period: $(1+i)^{0} A_{N}$.
- From $(N-1)$ th period: $(1+i)^{0}(1+i) A_{N-1}=(1+i)^{1} A_{N-1}$.
- From $(N-2)$ th period: $(1+i)^{0}(1+i)(1+i) A_{N-2}=(1+i)^{2} A_{N-2}$.
- From $(N-n)$ th period: $(1+i)^{n} A_{N-n}, \quad n=0, \ldots, N-1$.

$$
\begin{align*}
F & =(1+i)^{0} A_{N-0}+(1+i)^{1} A_{N-1}+(1+i)^{2} A_{N-2}+\cdots+(1+i)^{N-1} A_{N-(N-1)} \tag{21}\\
& =\sum_{n=0}^{N-1}(1+i)^{n} A_{N-n} \tag{22}
\end{align*}
$$

Present equivalent sum: Given $A_{1}, A_{2}, \ldots, A_{N}$ and i, find:

- Present equivalent sum P : loan or investment occurring 1 period before first amount A_{1}.
- Analogous to eqs.(13)-(15), p.10:
- Repayment of loan, P, after N years at interest i, from eq.(4), p.7:

$$
\begin{equation*}
F=(1+i)^{N} P \tag{23}
\end{equation*}
$$

- This must equal accumulated value of increased yearly earnings, eq.(22).
- Equate eqs.(22) and (23) and solve for P :

$$
\begin{align*}
P & =\frac{1}{(1+i)^{N}} \sum_{n=0}^{N-1}(1+i)^{n} A_{N-n} \tag{24}\\
& =\sum_{n=0}^{N-1}(1+i)^{-(N-n)} A_{N-n} \tag{25}
\end{align*}
$$

- This is the largest loan we can cover from accumulated earnings.
- This is the present (starting time) equivalent value of the annuity.

4.4 Variable Interest, Loan or Investment

§ Partial source: DeGarmo et al, p. 101.
§ Cash flow program:

- $A_{1}, A_{2}, \ldots, A_{N}$: Sequence of annual loans or investments, occurring at the end of each period.
- $i_{1}, i_{2}, \ldots, i_{N}$: Sequence of annual interest rates (for loan) or profit rates (for investment).
- N periods.
\S Future equivalent sum: Given $A_{1}, A_{2}, \ldots, A_{N}$ and $i_{1}, i_{2}, \ldots, i_{N}$, find:
- Future equivalent sum F occurring at the same time as A_{N}.
- Generalization of eqs.(21) and (22) on p.12:
- From N th period: $\left(1+i_{N}\right)^{0} A_{N}$.
- From $(N-1)$ th period: $\left(1+i_{N}\right)^{0}\left(1+i_{N-1}\right) A_{N-1}$.
- From $(N-2)$ th period: $\left(1+i_{N}\right)^{0}\left(1+i_{N-1}\right)\left(1+i_{N-2}\right) A_{N-2}$.
- From $(N-n)$ th period: $\left(1+i_{N}\right)^{0}\left(1+i_{N-1}\right) \cdots\left(1+i_{N-(n-1)}\right)\left(1+i_{N-n}\right) A_{N-n}$, $n=0, \ldots, N-1$.

$$
\begin{equation*}
F=\sum_{n=0}^{N-1}\left(\prod_{k=1}^{n}\left(1+i_{N-k}\right)\right) A_{N-n} \tag{26}
\end{equation*}
$$

\S Present equivalent sum: Given $A_{1}, A_{2}, \ldots, A_{N}$ and $i_{1}, i_{2}, \ldots, i_{N}$, find:

- Present equivalent sum P : loan or investment occurring 1 period before first amount A_{1}.
- Analogous to eqs.(23)-(24), p.12:

Repayment of loan, P, after N years at interest i, generalizing eq.(4), p.7:

$$
\begin{equation*}
F=\left(\prod_{k=0}^{N-1}\left(1+i_{N-k}\right)\right) P \tag{27}
\end{equation*}
$$

- This must equal accumulated value of increased yearly earnings, eq.(26).
- Equate eqs.(26) and (27) and solve for P :

$$
\begin{equation*}
P=\frac{\sum_{n=0}^{N-1}\left(\prod_{k=1}^{n}\left(1+i_{N-k}\right)\right) A_{N-n}}{\prod_{k=0}^{N-1}\left(1+i_{N-k}\right)} \tag{28}
\end{equation*}
$$

- This is the largest loan we can cover from accumulated earnings.
- This is the present (starting time) equivalent value of the annuity.

4.5 Compounding More Often Than Once per Year

Example 3 (DeGarmo, p.105.)

- Statement:
$\$ 100$ is invested for 10 years at nominal 6\% interest per year, compounded quarterly.
What is the Future Worth (FW) after 10 years?
- Solution 1 :
- 4 compounding periods per year. Total of $4 \times 10=40$ periods.
- Interest rate per period is $(6 \%) / 4=1.5 \%$ which means $i=0.015$.
- The FW after 10 years is, from eq.(4), p.7:

$$
\begin{equation*}
F=(1+i)^{N} P=1.015^{40} \times 100=\$ 181.40 \tag{29}
\end{equation*}
$$

- Solution 2:
- What we mean by "compounded quarterly" is that
the effective annual interest rate is defined by the following 2 relations:

$$
\begin{equation*}
i_{\mathrm{qtr}}=i_{\text {nominal }} / 4 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
1+i_{\mathrm{ef} \mathrm{ann}}=\left(1+i_{\mathrm{qtr}}\right)^{4} \quad \Longrightarrow \quad i_{\mathrm{ef} \mathrm{ann}}=(1+0.015)^{4}-1=0.061364 \tag{31}
\end{equation*}
$$

- Thus the effective annual interest rate is 6.1364%.
- The FW after 10 years is, from eq.(4), p.7:

$$
\begin{equation*}
F=1.061364^{10} \times 100=\$ 181.40 \tag{32}
\end{equation*}
$$

- Why do eqs.(29) and (32) agree? The general solution will explain.

\S General solution.

- A sum P is invested for N years at nominal annual interest i compounded m equally spaced times per year.
- The interest rate per period is (generalization of eq.(30)):

$$
\begin{equation*}
i_{\mathrm{per}}=\frac{i}{m} \tag{33}
\end{equation*}
$$

- What we mean by "compounded m times per year" is that the effective annual interest rate is determined by (generalization of eq.(31)):

$$
\begin{equation*}
1+i_{\mathrm{ef} \mathrm{ann}}=\left(1+i_{\mathrm{per}}\right)^{m} \tag{34}
\end{equation*}
$$

- The FW by the "period calculation" method is:

$$
\begin{equation*}
F_{\text {per }}=\left(1+i_{\text {per }}\right)^{m N} P \tag{35}
\end{equation*}
$$

- The FW by the "effective annual calculation" method is:

$$
\begin{equation*}
F_{\text {ef ann }}=\left(1+i_{\text {ef ann }}\right)^{N} P \tag{36}
\end{equation*}
$$

- Combining eqs.(34)-(36) shows:

$$
\begin{equation*}
F_{\text {ef ann }}=F_{\text {per }} \tag{37}
\end{equation*}
$$

Example 4 § Example. (DeGarmo, p.105)

- \$10,000 loan at nominal 12\% annual interest for 5 years, compounded monthly.
- Equal end-of-month payments, A, for 5 years.
- What is the value of A ?
- Solution:
- The period interest, eq.(33), p.14, is $i=0.12 / 12=0.01$.
- The principle, $P=10,000$, is related to equal monthly payments A by eq.(19), p.11:

$$
\begin{align*}
A & =\frac{i(1+i)^{N}}{(1+i)^{N}-1} P \tag{38}\\
& =0.0222444 P \tag{39}\\
& =\$ 222.44 \tag{40}
\end{align*}
$$

- Why is the following calculation not correct?
- The FW of the loan is:

$$
\begin{equation*}
F W=1.01^{5 \times 12} P=1.816697 \times 10,000=18,166.97 \tag{41}
\end{equation*}
$$

- Divide this into 60 equal payments:

$$
\begin{equation*}
A^{\prime}=\frac{18,166.97}{60}=\$ 302.78 \tag{42}
\end{equation*}
$$

- Eq.(41) is correct.
- Eq.(42) is wrong because it takes a final worth and charges it at earlier times, ignoring the equivalent value of these intermediate payments.
This explains why $A^{\prime}>A$.

Part II
 Applications of Time-Money Relationships

§ The problem:

- Given several different design concepts, each technologically acceptable.
- Select one option or prioritize all the options.
§ The economic approach:
- Treat each option as a capital investment.
- Consider:
- Expenditures for implementation.
- Revenues or savings over time.
- Attractive or acceptable return on investment.
§ We will consider two time-value methods:
- Present Worth, section 5, p. 17.
- Future Worth, section 6, p. 20.
- We will show that these are equivalent.
§ Central idea: Minimum Attractive Rate of Return (MARR): ${ }^{8}$
- The MARR is an interest rate or profit rate.
- Subjective judgment.
- Least rate of return from other known alternatives.
- Examples: DeGarmo pp.141-143.

[^5]
5 Present Worth Method

§ Primary source: DeGarmo et al, pp.144-149.

Basic idea of present worth ($P W$):

- Evaluate present worth (net present value) of all cash flows (cost and revenue), based on an interest rate usually equal to the MARR.
- The $P W$ is the profit left over after the investment.
- We assume that cash revenue is invested at interest rate equal to the MARR.
- The PW is also called Net Present Value (NPV).
\S Basic Formula for calculating the $P W$.
- $i=$ interest rate, e.g. MARR.
- $F_{k}=$ cash flow in end of periods $k=0,1,, \ldots, N$. Positive for revenue, negative for cost.
$F_{0}=$ initial investment at start of the $k=1$ period.
- $N=$ number of periods.
- Basic relation, eq.(5), p.7, PW of revenue F_{k} at period k :

$$
\begin{equation*}
P_{k}=\frac{1}{(1+i)^{k}} F_{k} \tag{43}
\end{equation*}
$$

- Formula for calculating the $P W$ of revenue stream $F_{0}, F_{1}, \ldots, F_{N}$:

$$
\begin{align*}
P W & =(1+i)^{-0} F_{0}+(1+i)^{-1} F_{1}+\cdots+(1+i)^{-k} F_{k}+\cdots+(1+i)^{-N} F_{N} \tag{44}\\
& =\sum_{k=0}^{N}(1+i)^{-k} F_{k} \tag{45}
\end{align*}
$$

- For a constant revenue stream, F, F, \ldots, F from $k=0$ to $k=N$:

$$
\begin{align*}
P W & =\sum_{k=0}^{N}(1+i)^{-k} F \tag{46}\\
& =\frac{\left(\frac{1}{1+i}\right)^{N+1}-1}{\frac{1}{1+i}-1} F \tag{47}\\
& =\frac{1+i-(1+i)^{-N}}{i} F \tag{48}
\end{align*}
$$

Example 5 Does the Present Worth method justify the following project?

- $S=$ Initial cost of the project $=\$ 10,000$.
- $R_{k}=$ revenue at the end of k th period $=\$ 5,310$.
- $C_{k}=$ operating cost at the end of k th period $=\$ 3,000$.
- $N=$ number of periods.
- $M=$ re-sale value of equipment at end of project $=\$ 2,000$.
- MARR $=10 \%$, so $i=0.1$.
- Adapting eq.(45), p.17, the $P W$ is:

$$
\begin{align*}
P W & =-S+\sum_{k=1}^{N}(1+i)^{-k} R_{k}-\sum_{k=1}^{N}(1+i)^{-k} C_{k}+(1+i)^{-N} M \tag{49}\\
& =-10,000+3.7908 \times 5,310-3.7908 \times 3,000+0.6209 \times 2,000 \tag{50}\\
& =-10,000+20,129.15-11,372.40+1,241.80 \tag{51}\\
& =-\$ 1.41 \tag{52}
\end{align*}
$$

- The project essentially breaks even (it loses $\$ 1.41$), so it is marginally justified by $P W$.

§ Bonds: ${ }^{9}$ General formulation. ${ }^{10}$

- Bonds and stocks ${ }^{11}$ are both securities: ${ }^{12}$

Bonds: a loan to the firm. Stocks: equity or partial ownership of firm.

- $F=$ face value (putative purchase cost) of bond.
- $r=$ bond rate $=$ interest paid by bond at end of each period.
- $C=r F=$ coupon payment (periodic interest payment) at end of each period.
- $M=$ market value of bond at maturity; usually equals F.
- $i=$ discount rate ${ }^{13}$ at which the sum of all future cash flows from the bond
(coupons and principal) are equal to the price of the bond. May be the MARR.
- $N=$ number of periods.
- Formula for calculating a bond's price. ${ }^{14}$ This is the PW of the bond:

$$
\begin{align*}
P & =(1+i)^{-N} M+\sum_{k=1}^{N}(1+i)^{-k} C \tag{53}\\
& =(1+i)^{-N} M+\frac{1-(1+i)^{-N}}{i} C \tag{54}
\end{align*}
$$

Example 6 Bonds. ${ }^{15}$

- $F=$ face value $=\$ 5,000$.
- $r=$ bond rate $=8 \%$ paid annually at end of each year.
- Bond will be redeemed at face value after 20 years, so $M=F$ and $N=20$.
- (a) How much should be paid now to receive a yield of 10% per year on the investment? $C=0.08 \times 5,000=400 . M=5,000 . i=0.1$, so from eq.(54):

$$
\begin{align*}
P & =1.1^{-20} 5000+\frac{1-1.1^{-20}}{0.1} 400 \tag{55}\\
& =0.1486 \times 5,000+8.5135 \times 400 \tag{56}\\
& =743.00+3,405.43 \tag{57}\\
& =4,148.43 \tag{58}
\end{align*}
$$

- (b) If this bond is purchased now for $\$ 4,600$, what annual yield would the buyer receive?

We must numerically solve eq.(54) for i with P, M, N and C given:

$$
\begin{equation*}
4,600=(1+i)^{-20} 5000+\frac{1-(1+i)^{-20}}{i} 400 \tag{59}
\end{equation*}
$$

The result is about 8.9% per year, which is less than 10% because $4,600>4,148.43$.

[^6]Example 7 (DeGarmo, pp.168-170).

- Project definition:
- $P=$ initial investment $=\$ 140,000$.
- $R_{k}=$ revenue at end of k th year $=\frac{2}{3}(45,000+5,000 k)$.
- $C_{k}=$ operating cost paid at end of k th year $=\$ 10,000$.
- $M_{k}=$ maintenance cost paid at end of k th year $=\$ 1,800$.
- $T_{k}=$ tax and insurance paid at end of k th year $=0.02 P=2,800$.
- $i=$ MARR interest rate $=15 \%$.
- Goal: recover investment with interest at the MARR after $N=10$ years.
- Question: Should the project be launched?
- Solution:
- Evaluate the PW.
- Launch project if $P W$ is positive.
- (What about risk and uncertainty?)
- Adapting the PW relation, eq.(45), p.17:

$$
\begin{align*}
P W & =-P+\sum_{k=1}^{N}\left(R_{k}-C_{k}-M_{k}-T_{k}\right)(1+i)^{-k} \tag{60}\\
& =-140,000+\sum_{k=1}^{10}\left(\frac{2}{3}(45,000+5,000 k)-10,000-1,800-2,800\right) 1.15^{-k} \tag{61}\\
& =\$ 10,619 \tag{62}
\end{align*}
$$

- The $P W$ is positive so, ignoring risk and uncertainty, the project is justified.

6 Future Worth Method

§ Primary source: DeGarmo et al, pp.149-150.
§ Basic idea of future worth (FW):

- Evaluate equivalent worth of all cash flows (cost and revenue) at end of planning horizon, based on an interest rate usually equal to the MARR.
- The FW is equivalent to the PW.
§ Basic Formula for calculating the FW.
- $i=$ interest rate, e.g. MARR.
- $F_{k}=$ cash flow in end of periods $k=0,1,, \ldots, N$. Positive for revenue, negative for cost. $F_{0}=$ initial investment at start of the $k=1$ period.
- $N=$ number of periods.
- Basic relation, eq.(4), p.7, FW at end of planning horizon, of revenue F_{k} at end of period k :

$$
\begin{equation*}
F W_{k}=(1+i)^{N-k} F_{k} \tag{63}
\end{equation*}
$$

- Formula for calculating the $F W$ of revenue stream $F_{0}, F_{1}, \ldots, F_{N}$:

$$
\begin{align*}
F W & =(1+i)^{N} F_{0}+(1+i)^{N-1} F_{1}+\cdots+(1+i)^{N-k} F_{k}+\cdots+(1+i)^{0} F_{N} \tag{64}\\
& =\sum_{k=0}^{N}(1+i)^{N-k} F_{k} \tag{65}
\end{align*}
$$

- The relation between PW and FW, eq.(5), p.7:

$$
\begin{align*}
P W & =(1+i)^{-N} F W \tag{66}\\
& =(1+i)^{-N} \sum_{k=0}^{N}(1+i)^{N-k} F_{k} \tag{67}\\
& =\sum_{k=0}^{N}(1+i)^{-k} F_{k} \tag{68}
\end{align*}
$$

which is eq.(45), p. 17.

Example 8

- $F_{0}=\$ 25,000=$ cost of new equipment.
- $F_{k}=\$ 8,000$ net revenue (after operating cost), $k=1, \ldots, 5$.
- $i=0.2=20 \%$ MARR.
- $N=5=$ planning horizon.
- $M=\$ 5,000=$ market value of equipment at end of planning horizon.
- Adapting eq.(65), p.20, the FW is:

$$
\begin{align*}
F W & =\sum_{k=0}^{N}(1+i)^{N-k} F_{k}+M \tag{69}\\
& =\underbrace{-(1.2)^{5} \times 25,000}_{\text {step } k=0}+\underbrace{\sum_{k=0}^{4} 1.2^{k} \times 8,000}_{\text {steps } k=5, \ldots, 1}+5,000 \tag{70}\\
& =-1.2^{5} \times 25,000+\frac{1.2^{5}-1}{1.2-1} \times 8,000+5,000 \tag{71}\\
& =-62,208+59,532.80+5,000 \tag{72}\\
& =2,324.80 \tag{73}
\end{align*}
$$

- This project is profitable.
- The PW of this project is:

$$
\begin{align*}
P W & =(1+i)^{-N} F W \tag{74}\\
& =(1.2)^{-5} \times 2,324.80 \tag{75}\\
& =934.28 \tag{76}
\end{align*}
$$

Part III Implications of Uncertainty

§ Sources of uncertainty:

- The future is uncertain:
- Costs.
- Revenues.
- Interest rates.
- Technological innovations.
- Social and economic changes or upheavals.
- The present is uncertain:
- Capabilities.
- Goals.
- Opportunities.
- The past is uncertain:
- Biased or incomplete historical data.
- Limited understanding of past processes, successes and failures.

7 Uncertain Profit Rate, i, of a Single Investment, P

§ Background: section 4.1, p.7.

7.1 Uncertainty

§ Problem statement:

- $P=$ investment now.
- $i=$ projected profit rate, \%/year.
- FW = future worth:

$$
\begin{equation*}
F W=(1+i)^{N} P \tag{77}
\end{equation*}
$$

- Questions:
- Is the investment worth it?
- Is the $F W$ good enough? Is $F W$ at least as large as $F W_{c}$?

$$
\begin{equation*}
F W(i) \geq F W_{\mathrm{c}} \tag{78}
\end{equation*}
$$

- Problem: i highly uncertain.
§ The info-gap.
- $\widetilde{i}=$ known estimate of profit rate.
- $i=$ unknown but constant true profit rate. Why is assumption of constancy important? Eq.(77)
- $s=$ known estimate of error of \widetilde{i}. i may err by s or more. Worst case not known.
- Fractional error:

$$
\begin{equation*}
\left|\frac{i-\widetilde{i}}{s}\right| \tag{79}
\end{equation*}
$$

- Fractional error is bounded:

$$
\begin{equation*}
\left|\frac{i-\widetilde{i}}{s}\right| \leq h \tag{80}
\end{equation*}
$$

- The bound, h, is unknown:

$$
\begin{equation*}
\left|\frac{i-\widetilde{i}}{s}\right| \leq h, \quad h \geq 0 \tag{81}
\end{equation*}
$$

- Fractional-error info-gap model for uncertain profit rate: ${ }^{16}$

$$
\begin{equation*}
\mathcal{U}(h)=\left\{i:\left|\frac{i-\widetilde{i}}{s}\right| \leq h\right\}, \quad h \geq 0 \tag{82}
\end{equation*}
$$

- Unbounded family of nested sets of i values.
- No known worst case.
- No known probability distribution.
$\circ h$ is the horizon of uncertainty.
§ The question: Is the $F W$ good enough? Is $F W$ at least as large as a critical value $F W_{\mathrm{c}}$?

$$
\begin{equation*}
F W(i) \geq F W_{\mathrm{c}} \tag{83}
\end{equation*}
$$

- Can we answer this question? No, because i is unknown.
- What (useful) question can we answer?

[^7]
7.2 Robustness

§ Robustness question (that we can answer): How large an error in \widetilde{i} can we tolerate?
\S Robustness function:

$$
\begin{align*}
\widehat{h}\left(F W_{\mathrm{c}}\right) & =\text { maximum tolerable uncertainty } \tag{84}\\
& =\text { maximum } h \text { such that } F W(i) \geq F W_{\mathrm{c}} \text { for all } i \in \mathcal{U}(h) \tag{85}\\
& =\max \left\{h:\left(\min _{i \in \mathcal{U}(h)} F W(i)\right) \geq F W_{\mathrm{c}}\right\} \tag{86}
\end{align*}
$$

§ Evaluating the robustness:

- Inner minimum:

$$
\begin{equation*}
m(h)=\min _{i \in \mathcal{U}(h)} F W(i) \tag{87}
\end{equation*}
$$

- $m(h)$ vs h :
- Decreasing function. Why?
- From eq.(77) (FW = (1+i) $\left.{ }^{N} P\right)$ and IGM in eq.(82), p.23: $m(h)$ occurs at $i=\widetilde{i}-s h:^{17}$

$$
\begin{equation*}
m(h)=(1+\widetilde{i}-s h)^{N} P \tag{88}
\end{equation*}
$$

- What is greatest tolerable horizon of uncertainty, h ? Equate $m(h)$ to $F W_{\mathrm{c}}$ and solve for h :

$$
\begin{equation*}
(1+\widetilde{i}-s h)^{N} P=F W_{\mathrm{c}} \Longrightarrow \widehat{h}\left(F W_{\mathrm{c}}\right)=\frac{1+\widetilde{i}}{s}-\frac{1}{s}\left(\frac{F W_{\mathrm{c}}}{P}\right)^{1 / N} \tag{89}
\end{equation*}
$$

Properties of the robustness curve: (See fig. 3)

- Trade off: robustness up (good) only for $F W_{\mathrm{c}}$ down (bad). (Pessimist's theorem)
- Zeroing: no robustness of predicted $F W$: $(1+\widetilde{i})^{N} P$.

Figure 3: Robustness curve.

[^8]

Figure 4: $m(h)$ is inverse function of $\widehat{h}\left(F W_{\mathrm{c}}\right)$.
\S We understand from fig. 4 that $m(h)$ is the inverse function of $\widehat{h}\left(F W_{\mathrm{c}}\right)$. Why?

7.3 Decision Making and the Innovation Dilemma

Decision making.

- Suppose your information is something like:
- Annual profits are typically about 12%, plus or minus 2% or 4% or more, or,
- Similar projects have had average profits of 12% with standard deviation of 3%, but the future is often surprising.
- You might quantify this information with an info-gap model like eq.(82), p. 23 with $\widetilde{i}=0.12$ and $s=0.03$.
- You might then construct the robustness function like eq.(89), p.24.
- What $F W_{\mathrm{c}}$ is credible? One with no less than "several" units of robustness.
- For instance, from eq.(89):

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right) \approx 3 \quad \Longrightarrow \quad \frac{F W_{\mathrm{c}}}{P} \approx(1+\widetilde{i}-3 s)^{N} \tag{90}
\end{equation*}
$$

With $\widetilde{i}=0.12, s=0.03, N=10$ years this is:

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=3 \quad \Longrightarrow \quad \frac{F W_{\mathrm{c}}}{P}=(1+0.12-3 \times 0.03)^{10}=1.03^{10}=1.34 \tag{91}
\end{equation*}
$$

- Compare with the nominal profit ratio predicted with the best estimate, eq.(77), p.23:

$$
\begin{equation*}
\frac{\left.F W_{\mathrm{c}} \widetilde{i}\right)}{P}=(1+\widetilde{i})^{N}=(1.12)^{10}=3.11 \tag{92}
\end{equation*}
$$

- Given the knowledge and the info-gap, a credible profit ratio is

$$
1.34 \text { (robustness = 3) }
$$

rather than
3.11 (robustness = 0).
§ Innovation dilemma.

- Choose between two projects or design concepts:
- State of the art, with standard projected profit and moderate uncertainty.
- New and innovative, with higher projected profit and higher uncertainty.
- For instance:
- SotA: $\widetilde{i}=0.03, s=0.015, N=10$. So $F W(\widetilde{i}) / P=(1+\widetilde{i})^{10}=1.34$.
- Innov: $\widetilde{i}=0.05, s=0.04, N=10$. So $F W(\widetilde{i}) / P=(1+\widetilde{i})^{10}=1.63$.
- The dilemma:

Innovation is predicted to be better, but it is more uncertain and thus may be worse.

- Robustness functions shown in fig. 5.
- Note trade off and zeroing.
- SotA more robust for $F W_{\mathrm{c}} / P<1.2$. Note: $\widehat{h}\left(F W_{\mathrm{c}} / P=1 \mid\right.$ SotA $)=2$.
- Innov more robust for $F W_{\mathrm{c}} / P>1.2$. Note: $\widehat{h}\left(F W_{\mathrm{c}} / P>1.2 \mid\right.$ innov $)<1$.
- Neither option looks reliably attractive.
- Generic analysis:
- Cost of robustness: slope: Greater for innovative option.
- Innovative option putatively better, but greater cost of robustness.
- Result: preference reversal.

Figure 5: Illustration of the innovation dilemma. (Transp.)

8 Uncertain Constant Yearly Profit, A

§ Background: section 4.2, p.8.

8.1 Info-Gap on A

\S Future worth of constant profit, eq.(12), p.9:

- $A=$ profit at end of each period. E.g. annuity; no initial investment.
- $i=$ reinvest at profit rate i.
- $N=$ number of periods.
- The future worth is:

$$
\begin{equation*}
F W=\frac{(1+i)^{N}-1}{i} A \tag{93}
\end{equation*}
$$

\S Uncertainty: the constant end-of-period profit, A, is uncertain.

- $\widetilde{A}=$ known estimated profit.
- $A=$ unknown but constant true profit.
- $s_{A}=$ error of estimate. A may be more or less that \widetilde{A}. No known worst case.
- Fractional-error info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{A:\left|\frac{A-\widetilde{A}}{s_{A}}\right| \leq h\right\}, \quad h \geq 0 \tag{94}
\end{equation*}
$$

\S Robust satisficing:

- Satisfy performance requirement:

$$
\begin{equation*}
F W(A) \geq F W_{\mathrm{c}} \tag{95}
\end{equation*}
$$

- Maximize robustness to uncertainty.

§ Robustness:

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} F W(A)\right) \geq F W_{\mathrm{c}}\right\} \tag{96}
\end{equation*}
$$

§ Evaluating the robustness:

- Inner minimum:

$$
\begin{equation*}
m(h)=\min _{A \in \mathcal{U}(h)} F W(A) \tag{97}
\end{equation*}
$$

- $m(h)$ vs h :
- Decreasing function. Why?
- Inverse of $\widehat{h}\left(F W_{\mathrm{c}}\right)$. Why?
- From eq.(93) ($F W=\frac{(1+i)^{N}-1}{i} A$), minimum occurs at $A=\widetilde{A}-s h$:

$$
\begin{equation*}
m(h)=\frac{(1+i)^{N}-1}{i}\left(\widetilde{A}-s_{A} h\right) \tag{98}
\end{equation*}
$$

- Equate to $F W_{\mathrm{c}}$ and solve for h :

$$
\begin{equation*}
\frac{(1+i)^{N}-1}{i}\left(\widetilde{A}-s_{A} h\right)=F W_{\mathrm{c}} \Longrightarrow \widehat{h}\left(F W_{\mathrm{c}}\right)=\frac{\widetilde{A}}{s_{A}}-\frac{i}{\left[(1+i)^{N}-1\right] s_{A}} F W_{\mathrm{c}} \tag{99}
\end{equation*}
$$

Or zero if this is negative.

- Zeroing and trade off. See fig. 6.

Figure 6: Trade off and zeroing of robustness.

Figure 7: Low and High cost of robustness.
§ Consider the cost of robustness, determined by the slope of the robustness curve.

- Explain the meaning of cost of robustness. See fig. 7.

$$
\begin{equation*}
\text { slope }=-\frac{i}{\left[(1+i)^{N}-1\right] s_{A}}=-\frac{1}{s_{A}}\left(\sum_{n=0}^{N-1}(1+i)^{n}\right)^{-1} \tag{100}
\end{equation*}
$$

Latter equality based on eq.(12), p.9.

- We see that:

$$
\begin{equation*}
\frac{\partial \mid \text { slope } \mid}{\partial s_{A}}<0 \tag{101}
\end{equation*}
$$

This means that cost of robustness increases as uncertainty, s_{A}, increases. Why?

- We see that:

$$
\begin{equation*}
\frac{\partial \mid \text { slope } \mid}{\partial i}<0 \tag{102}
\end{equation*}
$$

This means that cost of robustness increases as profit rate, i, increases. Why?
From eq.(93) $\left(F W=\frac{(1+i)^{N}-1}{i} A\right)$: large i magnifies A, and thus magnifies uncertainty in A.

- Example. $i=0.15, s_{A}=0.05, N=10$. Thus:

$$
\begin{equation*}
\text { slope }=\frac{0.15}{\left(1.15^{10}-1\right) 0.05}=0.98(\approx 1) \tag{103}
\end{equation*}
$$

Thus decreasing $F W_{\mathrm{c}}$ by 1 unit, increases the robustness by 1 unit.

8.2 PDF of A

§ Future worth of constant profit, eq.(12), p.9:

- $A=$ profit (e.g. annuity) at end of each period.
- $i=$ reinvest at profit rate i.
- $N=$ number of periods.
- The future worth is:

$$
\begin{equation*}
F W(A)=\frac{(1+i)^{N}-1}{i} A \tag{104}
\end{equation*}
$$

§ Requirement:

$$
\begin{equation*}
F W(A) \geq F W_{\mathrm{c}} \tag{105}
\end{equation*}
$$

§ Problem:

- A is a random variable (but constant in time) with probability density function (pdf) $p(A)$.
- Is the investment reliable?
§ Solution: Use probabilistic requirement.
- Probability of failure:

$$
\begin{equation*}
P_{\mathrm{f}}=\operatorname{Prob}\left(F W(A)<F W_{\mathrm{c}}\right) \tag{106}
\end{equation*}
$$

Figure 8: Probability of failure, eq.(120).

- Probabilistic requirement:

$$
\begin{equation*}
P_{\mathrm{f}} \leq P_{\mathrm{c}} \tag{107}
\end{equation*}
$$

§ Probability of failure for normal distribution: $A \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

- The pdf:

$$
\begin{equation*}
p(A)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(A-\mu)^{2}}{2 \sigma^{2}}\right) \tag{108}
\end{equation*}
$$

- Probability of failure:

$$
\begin{align*}
P_{\mathrm{f}} & =\operatorname{Prob}\left(F W(A)<F W_{\mathrm{c}}\right) \tag{109}\\
& =\operatorname{Prob}\left(\frac{(1+i)^{N}-1}{i} A \leq F W_{\mathrm{c}}\right) \tag{110}\\
& =\operatorname{Prob}(A \leq \underbrace{\frac{i}{(1+i)^{N}-1} F W_{\mathrm{c}}}_{A_{\mathrm{c}}}) \tag{111}\\
& =\operatorname{Prob}\left(A \leq A_{\mathrm{c}}\right) \tag{112}\\
& =\operatorname{Prob}\left(\frac{A-\mu}{\sigma} \leq \frac{A_{\mathrm{c}}-\mu}{\sigma}\right) \tag{113}
\end{align*}
$$

- $\frac{A-\mu}{\sigma}$ is a standard normal variable, $\mathcal{N}(0,1)$, with $\operatorname{cdf} \Phi(\cdot)$.
- Thus:

$$
\begin{align*}
P_{\mathrm{f}} & =\Phi\left(\frac{A_{\mathrm{c}}-\mu}{\sigma}\right) \tag{114}\\
& =\Phi\left(\frac{i}{\sigma\left[(1+i)^{N}-1\right]} F W_{\mathrm{c}}-\frac{\mu}{\sigma}\right) \tag{115}
\end{align*}
$$

Example 9

- $F W_{\mathrm{c}}=\varepsilon F W(\mu) . \quad$ E.g. $\varepsilon=0.5$.
- From eqs.(104) and (115):

$$
\begin{equation*}
P_{\mathrm{f}}=\Phi\left(\frac{\varepsilon \mu}{\sigma}-\frac{\mu}{\sigma}\right)=\Phi\left(-\frac{(1-\varepsilon) \mu}{\sigma}\right) \tag{116}
\end{equation*}
$$

- From figs. 9 and 10 on p.30:
- P_{f} increases as critical future worth increases (e.g. as ε increases): $F W_{\mathrm{c}}=\varepsilon F W(\mu)$. - P_{f} increases as relative uncertainty increases: as μ / σ decreases.

Figure 9: Probability of failure, eq.116. (Transp.)

Figure 10: Probability of failure, eq.116. (Transp.)

8.3 Info-Gap on PDF of A

§ Future worth of constant profit, eq.(12), p.9:

- $A=$ profit (e.g. annuity) at end of each period.
- $i=$ reinvest at profit rate i.
- $N=$ number of periods.
- The future worth is:

$$
\begin{equation*}
F W(A)=\frac{(1+i)^{N}-1}{i} A \tag{117}
\end{equation*}
$$

§ Requirement:

$$
\begin{equation*}
F W(A) \geq F W_{\mathrm{c}} \tag{118}
\end{equation*}
$$

§ First Problem:

- A is a random variable (but constant in time) with probability density function (pdf) $p(A)$.
- Is the investment reliable?
§ Solution: Use probabilistic requirement.
- Probability of failure:

$$
\begin{align*}
P_{\mathrm{f}} & =\operatorname{Prob}\left(F W(A)<F W_{\mathrm{c}}\right) \tag{119}\\
& =\operatorname{Prob}\left(A \leq A_{\mathrm{c}}\right) \tag{120}
\end{align*}
$$

$$
A_{\mathrm{c}}=\frac{i}{\sigma\left[(1+i)^{N}-1\right]} F W_{\mathrm{c}} \text {, defined in eq.(111), p.29. }
$$

- Probabilistic requirement:

$$
\begin{equation*}
P_{\mathrm{f}} \leq P_{\mathrm{c}} \tag{121}
\end{equation*}
$$

\S Second problem: pdf of $A, p(A)$, is info-gap uncertain with info-gap model $\mathcal{U}(h)$.
§ Solution: Embed the probabilistic requirement in an info-gap analysis of robustness to uncertainty.
§ Robustness:

$$
\begin{equation*}
\widehat{h}\left(P_{\mathrm{c}}\right)=\max \left\{h:\left(\max _{p \in \mathcal{U}(h)} P_{\mathrm{f}}(p)\right) \leq P_{\mathrm{c}}\right\} \tag{122}
\end{equation*}
$$

Example 10 Normal distribution with uncertain mean.

§ Formulation:

- $A \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
- $\widetilde{\mu}=$ known estimated mean.
- $\mu=$ unknown true mean.
- $s_{\mu}=$ error estimate. μ may err more or less than s_{μ}.
- Info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{\mu:\left|\frac{\mu-\tilde{\mu}}{s_{\mu}}\right| \leq h\right\}, \quad h \geq 0 \tag{123}
\end{equation*}
$$

Figure 11: Probability of failure, eq.(120).

§ Evaluating the robustness:

- $M(h)=$ inner maximum in eq.(122).
- $M(h)$ occurs if $p(A)$ is shifted maximally left, so $\mu=\widetilde{\mu}-s_{\mu} h$:

$$
\begin{align*}
M(h) & =\max _{p \in \mathcal{U}(h)} \operatorname{Prob}\left(A \leq A_{\mathrm{c}} \mid \mu\right) \tag{124}\\
& =\operatorname{Prob}\left(\left.\frac{A-\left(\widetilde{\mu}-s_{\mu} h\right)}{\sigma} \leq \frac{A_{\mathrm{c}}-\left(\widetilde{\mu}-s_{\mu} h\right)}{\sigma} \right\rvert\, \mu=\widetilde{\mu}-s_{\mu} h\right) \tag{125}\\
& =\Phi\left(\frac{A_{\mathrm{c}}-\left(\widetilde{\mu}-s_{\mu} h\right)}{\sigma}\right) \tag{126}\\
& =\Phi\left(\frac{i}{\sigma\left[(1+i)^{N}-1\right]} F W_{\mathrm{c}}-\frac{\widetilde{\mu}-s_{\mu} h}{\sigma}\right) \tag{127}
\end{align*}
$$

because $\frac{A-\left(\widetilde{\mu}-s_{\mu} h\right)}{\sigma}$ is standard normal.

- Let $F W_{\mathrm{c}}=\varepsilon F W(\widetilde{\mu})=\varepsilon \frac{(1+i)^{N}-1}{i} \widetilde{\mu}$. Eq.(127) is:

$$
\begin{align*}
M(h) & =\Phi\left(\frac{\varepsilon \widetilde{\mu}}{\sigma}-\frac{\widetilde{\mu}-s_{\mu} h}{\sigma}\right) \tag{128}\\
& =\Phi\left(-\frac{(1-\varepsilon) \widetilde{\mu}-s_{\mu} h}{\sigma}\right) \tag{129}
\end{align*}
$$

- $M(h)$ is the inverse of $\widehat{h}\left(P_{\mathrm{c}}\right)$:
$M(h)$ horizontally vs h vertically is equivalent to P_{c} horizontally vs $\widehat{h}\left(P_{\mathrm{c}}\right)$ vertically.
See figs. 12 and 13.
- Zeroing: $\widehat{h}\left(P_{\mathrm{c}}\right)=0$ when $P_{\mathrm{c}}=P_{\mathrm{f}}(\widetilde{\mu})$.

Estimated probability of failure, $P_{\mathrm{f}}(\widetilde{\mu})$, increases as relative error, σ / μ, increases.

- Trade off: robustness decreases (gets worse) as P_{c} decreases (gets better).
- Cost of robustness: increase in P_{c} required to obtain given increase in \widehat{h}.

Cost of robustness increases as σ / μ and σ / s_{μ} increase at low P_{c}; fig. 13.

- $P_{\mathrm{f}}(\widetilde{\mu})$ and cost of robustness change in reverse directions as σ / μ changes.
- This causes curve-crossing and preference-reversal.
- At small P_{c} (fig. 13): robustness increases as relative error, σ / μ, falls (as $\frac{\mu}{\sigma}$ rises.)
\circ At large P_{c} (fig. 12): preference reversal at $P_{\mathrm{c}}=0.5$.

Figure 12: Robustness function, based on eq.129. (Transp.)

Figure 13: Robustness function, based on eq.129. (Transp.)

9 Uncertain Return, i, on Uncertain Constant Yearly Profit, A

§ Background: section 4.2, p. 8.
\S Future worth of constant profit, eq.(12), p.9:

- $A=$ profit at end of each period.
- $i=$ reinvest at profit rate i.
- $N=$ number of periods.
- The future worth, assuming that i is the same in each period, is:

$$
\begin{equation*}
F W(A, i)=\frac{(1+i)^{N}-1}{i} A \tag{130}
\end{equation*}
$$

§ Performance requirement:

$$
\begin{equation*}
F W(A, i) \geq F W_{\mathrm{c}} \tag{131}
\end{equation*}
$$

\S Uncertainty: A and i are both uncertain and constant, and we know $i \geq 0$ and $A \geq 0$ (or we can prevent $i<0$ or $A \leq 0$, a loss).

Fractional-error info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{A, i: A \geq 0,\left|\frac{A-\widetilde{A}}{s_{A}}\right| \leq h, i \geq 0,\left|\frac{i-\widetilde{i}}{s_{i}}\right| \leq h\right\}, \quad h \geq 0 \tag{132}
\end{equation*}
$$

Robustness:

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{A, i \in \mathcal{U}(h)} F W(A, i)\right) \geq F W_{\mathrm{c}}\right\} \tag{133}
\end{equation*}
$$

Evaluating the robustness:

- Inner minimum:

$$
\begin{equation*}
m(h)=\min _{A, i \in \mathcal{U}(h)} F W(A, i) \tag{134}
\end{equation*}
$$

- $m(h)$ vs h :
- Decreasing function.
- Recall eqs.(11) and (12), p.9:

$$
\begin{equation*}
F=\sum_{n=0}^{N-1}(1+i)^{n} A=\frac{(1+i)^{N}-1}{i} A \tag{135}
\end{equation*}
$$

- Inverse of $\widehat{h}\left(F W_{\mathrm{c}}\right)$.
- From eqs.(130), (132) and (135), the inner minimum, $m(h)$, occurs at:

$$
A=\left(\dot{\widetilde{A}}-s_{A} h\right)^{+} \text {and } i=\max \left(0, \tilde{i}-s_{i} h\right)=\left(\widetilde{i}-s_{i} h\right)^{+} .
$$

- Thus:

$$
m(h)=\left\{\begin{array}{cl}
\frac{\left(1+\tilde{i}-s_{i} h\right)^{N}-1}{\tilde{i}-s_{i} h}\left(\widetilde{A}-s_{A} h\right)^{+}, & \text {for } h<\tilde{i} / s_{i} \tag{136}\\
N\left(\widetilde{A}-s_{A} h\right)^{+}, & \text {for } h \geq \widetilde{i} / s_{i}
\end{array}\right.
$$

Figure 14: Robustness function, based on eq. 136. (Transp.)

Figure 15: Robustness function, based on eq.136. (Transp.)
\S Robustness functions, fig. 14. $N=10, \widetilde{A}=1, s_{A}=0.3$.

- Blue: $\widetilde{i}=0.03, s_{i}=0.01$.
- Green: $\tilde{i}=0.05, s_{i}=0.04$.
- Similar, but mild preference reversal:

Lower return ($\widetilde{i}=0.03$) and lower uncertainty ($s_{i}=0.01$) roughly equivalent to
Higher return ($\widetilde{i}=0.05$) and higher uncertainty ($s_{i}=0.04$)
Robustness functions, fig. 15. $N=10$.

- Blue: $\widetilde{i}=0.03, s_{i}=0.01, \widetilde{A}=1, s_{A}=0.3$. (Same a blue in fig. 14.)
- Green: $\widetilde{i}=0.05, s_{i}=0.04, \widetilde{A}=1, s_{A}=0.3$. (Same a green in fig. 14.)
- Red: $\widetilde{i}=0.05, s_{i}=0.04, \widetilde{A}=1.5, s_{A}=0.5$.
- Strong preference reversal between red and blue or green.

10 Present and Future Worth Methods with Uncertainty

§ Background: section 5.

10.1 Example 5, p.17, Re-Visited

Example 11 Example 5, p.17, re-visited.
\S Does the Present Worth method justify the following project,
given uncertainty in revenue, cost and re-sale value?

- $S=$ Initial cost of the project $=\$ 10,000$.
- $\widetilde{R}=$ estimated revenue at the end of k th period $=\$ 5,310$.
- $\widetilde{C}=$ estimated operating cost at the end of k th period $=\$ 3,000$.
- $\widetilde{M}=$ estimated re-sale value of equipment at end of project $=\$ 2,000$.
- $N=$ number of periods $=10$.
- $\operatorname{MARR}=10 \%$, so $i=0.1$.
- From eq.(49), p.17, the $P W$ is:

$$
\begin{equation*}
P W(R, C, M)=-S+\sum_{k=1}^{N}(1+i)^{-k} R_{k}-\sum_{k=1}^{N}(1+i)^{-k} C_{k}+(1+i)^{-N} M \tag{137}
\end{equation*}
$$

- Fractional-error info-gap model for R, C and M :
$\mathcal{U}(h)=\left\{R, C, M:\left|\frac{R_{k}-\widetilde{R}}{s_{R, k}}\right| \leq h,\left|\frac{C_{k}-\widetilde{C}}{s_{C, k}}\right| \leq h, k=1, \ldots, N,\left|\frac{M-\widetilde{M}}{s_{M}}\right| \leq h\right\}, \quad h \geq 0$
Consider expanding uncertainty envelopes for R and C :

$$
\begin{equation*}
s_{x, k}=(1+\varepsilon)^{k-1} s_{x}, \quad x=R \text { or } C \tag{139}
\end{equation*}
$$

E.g., $\varepsilon=0.1$. Note that ε is like a discount rate on future uncertainty.

- Performance requirement:

$$
\begin{equation*}
P W(R, C, M) \geq P W_{\mathrm{c}} \tag{140}
\end{equation*}
$$

- Robustness: greatest tolerable uncertainty:

$$
\begin{equation*}
\widehat{h}\left(P W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{R, C, M \in \mathcal{U}(h)} P W(R, C, M)\right) \geq P W_{\mathrm{c}}\right\} \tag{141}
\end{equation*}
$$

- The inner minimum, $m(h)$, occurs at small R_{k} and M and large C_{k} :

$$
\begin{align*}
R_{k} & =\widetilde{R}-s_{R, k} h=\widetilde{R}-(1+\varepsilon)^{k-1} s_{R} h \tag{142}\\
C_{k} & =\widetilde{C}+s_{C, k} h=\widetilde{C}+(1+\varepsilon)^{k-1} s_{C} h \tag{143}\\
M & =\widetilde{M}-s_{M} h \tag{144}
\end{align*}
$$

Thus $m(h)$ equals:

$$
\begin{align*}
m(h)= & -S+\sum_{k=1}^{N}(1+i)^{-k}\left[\widetilde{R}-(1+\varepsilon)^{k-1} s_{R} h-\widetilde{C}-(1+\varepsilon)^{k-1} s_{C} h\right] \\
& +(1+i)^{-N}\left(\widetilde{M}-s_{M} h\right) \tag{145}
\end{align*}
$$

$$
\begin{align*}
= & \underbrace{-S+(\widetilde{R}-\widetilde{C}) \sum_{k=1}^{N}(1+i)^{-k}+(1+i)^{-N} \widetilde{M}}_{P W(\widetilde{R}, \widetilde{C}, \widetilde{M})} \\
& -\frac{s_{R}+s_{c}}{1+\varepsilon} h \underbrace{\sum_{k=1}^{N}\left(\frac{1+\varepsilon}{1+i}\right)^{k}}_{Q}-(1+i)^{-N_{s_{M}}} \tag{146}\\
= & P W(\widetilde{R}, \widetilde{C}, \widetilde{M})-\left(\frac{s_{R}+s_{c}}{1+\varepsilon} Q+(1+i)^{-N} s_{M}\right) h \tag{147}
\end{align*}
$$

Evaluate Q with eq.(7), p.9, unless $\varepsilon=i$ in which case $Q=N$.
Question: $m(0)=P W(\widetilde{R}, \widetilde{C}, \widetilde{M})$. Why? What does this mean?
Question: $\mathrm{d} m(h) / \mathrm{d} h<0$. Why? What does this mean?

- Equate $m(h)$ to $P W_{\mathrm{c}}$ and solve for h to obtain the robustness:

$$
\begin{equation*}
m(h)=P W_{\mathrm{c}} \Longrightarrow \widehat{h}\left(P W_{\mathrm{c}}\right)=\frac{P W(\widetilde{R}, \widetilde{C}, \widetilde{M})-P W_{\mathrm{c}}}{\frac{s_{R}+\mathrm{c}_{\mathrm{c}}}{1+\varepsilon} Q+(1+i)^{-N} s_{M}} \tag{148}
\end{equation*}
$$

See fig. 16, p. 37

- Horizontal intercept of the robustness curve. From eq.(52), p.17, we know:

$$
\begin{equation*}
P W(\widetilde{R}, \widetilde{C}, \widetilde{M})=-\$ 1.41 \tag{149}
\end{equation*}
$$

- The project nominally almost breaks even.
- Zeroing: no robustness at predicted outcome.
- Slope of the robustness curve is:

$$
\begin{equation*}
\text { Slope }=-\left(\frac{s_{R}+s_{c}}{1+\varepsilon} Q+s_{M}\right)^{-1} \tag{150}
\end{equation*}
$$

Let $\varepsilon=i=0.1$ so $Q=N=10 . s_{R}=0.05 \widetilde{R}, s_{C}=0.03 \widetilde{C}, s_{M}=0.03 \widetilde{M}$. Thus:

$$
\begin{equation*}
\text { Slope }=-\left(\frac{0.05 \times 5,310+0.03 \times 3,000}{1.1} 10+0.03 \times 2,000\right)^{-1}=-1 / 3,291.82 \tag{151}
\end{equation*}
$$

Cost of robustness: P_{c} must be reduced by $\$ 3,291.82$ in order to increase \widehat{h} by 1 unit.

- Decision making. We need "several" units of robustness, say $\widehat{h}\left(P W_{\mathrm{c}}\right) \approx 3$ to 5. E.g.

$$
\begin{equation*}
\widehat{h}\left(P W_{\mathrm{c}}\right)=4 \quad \Longrightarrow \quad P W_{\mathrm{c}}=-\$ 13,168.69 \tag{152}
\end{equation*}
$$

Nominal $P W=-\$ 1.41$.
Reliable $P W=-\$ 13,168.69$.
Thus the incomes, R_{k} and M, do not reliably cover the costs, C_{k} and S..

Figure 16: Robustness curve, eq.148, p.36, of example 11.

10.2 Example 7, p.19, Re-Visited

Example 12 Example 7, p.19, re-visited.
§ Does the Present Worth method justify the following project, given uncertainty in revenue, operating and maintenance costs?

- Project definition:
- $P=$ initial investment $=\$ 140,000$.
- $\widetilde{R}_{k}=$ estimated revenue at end of k th year $=\frac{2}{3}(45,000+5,000 k)$.
- $\widetilde{C}_{=}$estimated operating cost paid at end of k th year $=\$ 10,000$.
- $\widetilde{M}=$ estimated maintenance cost paid at end of k th year $=\$ 1,800$.
- $T=$ tax and insurance paid at end of k th year $=0.02 P=2,800$.
- $i=0.15$ representing a MARR interest rate of 15%.
- $N=10$ years.
- From eq.(60), p.19, the $P W$ is:

$$
\begin{equation*}
P W(R, C, M)=-P+\sum_{k=1}^{N}\left(R_{k}-C_{k}-M_{k}-T_{k}\right)(1+i)^{-k} \tag{153}
\end{equation*}
$$

- Fractional-error info-gap model for R, C and M :

$$
\begin{equation*}
\mathcal{U}(h)=\left\{R, C, M:\left|\frac{R_{k}-\widetilde{R}_{k}}{s_{R, k}}\right| \leq h,\left|\frac{C_{k}-\widetilde{C}}{s_{C, k}}\right| \leq h,\left|\frac{M_{k}-\widetilde{M}}{s_{M, k}}\right| \leq h, k=1, \ldots, N\right\}, \quad h \geq 0 \tag{154}
\end{equation*}
$$

Consider expanding uncertainty envelopes for R and C :

$$
\begin{equation*}
s_{x, k}=(1+\varepsilon)^{k-1} s_{x}, \quad x=R, C, \text { or } M \tag{155}
\end{equation*}
$$

E.g., $\varepsilon=0.15$.

- Performance requirement:

$$
\begin{equation*}
P W(R, C, M) \geq P W_{\mathrm{c}} \tag{156}
\end{equation*}
$$

- Robustness: greatest tolerable uncertainty:

$$
\begin{equation*}
\widehat{h}\left(P W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{R, C, M \in \mathcal{U}(h)} P W(R, C, M)\right) \geq P W_{\mathrm{c}}\right\} \tag{157}
\end{equation*}
$$

- The inner minimum, $m(h)$, occurs at small R_{k} and large C_{k} and M_{k} :

$$
\begin{align*}
R_{k} & =\widetilde{R}_{k}-s_{R, k} h=\widetilde{R}_{k}-(1+\varepsilon)^{k-1} s_{R} h \tag{158}\\
C_{k} & =\widetilde{C}+s_{C, k} h=\widetilde{C}+(1+\varepsilon)^{k-1} s_{C} h \tag{159}\\
M_{k} & =\widetilde{M}+s_{M, k} h=\widetilde{M}+(1+\varepsilon)^{k-1} s_{M} h \tag{160}
\end{align*}
$$

Thus $m(h)$ equals:

$$
\begin{align*}
m(h)= & -P \tag{161}\\
& +\sum_{k=1}^{N}(1+i)^{-k}\left[\widetilde{R}_{k}-(1+\varepsilon)^{k-1} s_{R} h-\widetilde{C}-(1+\varepsilon)^{k-1} s_{C} h-\widetilde{M}-(1+\varepsilon)^{k-1} s_{M} h-T_{k}\right] \\
= & \underbrace{-P+\sum_{k=1}^{N}(1+i)^{-k} \widetilde{R}_{k}-(\widetilde{C}+\widetilde{M}+T) \sum_{k=1}^{N}(1+i)^{-k}}_{P W(\widetilde{R}, \widetilde{C}, \widetilde{M})} \\
& -\frac{s_{R}+s_{C}+s_{M}}{1+\varepsilon} h \underbrace{\sum_{k=1}^{N}\left(\frac{1+\varepsilon}{1+i}\right)^{k}}_{Q} \tag{162}\\
= & P W(\widetilde{R}, \widetilde{C}, \widetilde{M})-\underbrace{\frac{s_{R}+s_{C}+s_{M}}{1+\varepsilon} Q h}_{Q} \tag{163}
\end{align*}
$$

Evaluate Q with eq.(7), p.9, unless $\varepsilon=i$ in which case $Q=N$.

- Equate $m(h)$ to $P W_{\mathrm{c}}$ and solve for h to obtain the robustness:

$$
\begin{equation*}
m(h)=P W_{\mathrm{c}} \Longrightarrow \quad \widehat{h}\left(P W_{\mathrm{c}}\right)=\frac{P W(\widetilde{R}, \widetilde{C}, \widetilde{M})-P W_{\mathrm{c}}}{\frac{s_{R}+s_{C}+s_{M}}{1+\varepsilon} Q} \tag{164}
\end{equation*}
$$

See fig. 17.

Figure 17: Robustness curve, eq.164, p.38, of example 12.

- Horizontal intercept of the robustness curve. From eq.(62), p.19, we know:

$$
\begin{equation*}
P W(\widetilde{R}, \widetilde{C}, \widetilde{M})=\$ 10,619 . \tag{165}
\end{equation*}
$$

- The project nominally earns \$10,619.
- Zeroing: no robustness at predicted outcome.
- Slope of the robustness curve is:

$$
\begin{equation*}
\text { Slope }=-\left(\frac{s_{R}+s_{C}+s_{M}}{1+\varepsilon} Q\right)^{-1} \tag{166}
\end{equation*}
$$

Let $\varepsilon=i=0.15$ so $Q=N=10 . s_{R}=0.05 \widetilde{R}_{1}, s_{C}=0.03 \widetilde{C}, s_{M}=0.03 \widetilde{M}$. Thus:
Slope $=-\left(\frac{0.05 \times(2 / 3) \times 50,000+0.03 \times 10,000+0.03 \times 1,800}{1.15} 10\right)^{-1}=-1 / 17,571.01$
Cost of robustness: P_{c} must be reduced by $\$ 17,571.01$ in order to increase \widehat{h} by 1 unit.

- Decision making. We need "several" units of robustness, say $\widehat{h}\left(P W_{\mathrm{c}}\right) \approx 3$ to 5. E.g.

$$
\begin{equation*}
\widehat{h}\left(P W_{\mathrm{c}}\right)=4 \quad \Longrightarrow \quad P W_{\mathrm{c}}=-\$ 59,665.04 \tag{168}
\end{equation*}
$$

Nominal $P W=+\$ 10,619$.
Reliable $P W=-\$ 59,665.04$.
Thus the incomes, R_{k}, do not cover the costs, C_{k}, T_{k}, M_{k}, and P.

- Compare examples 11 and 12, fig. 18, p. 39 .
- Example 11: nominally worse but lower cost of robustness.
- Example 12: nominally better but higher cost of robustness.
- Preference reversal at $P W_{\mathrm{c}}=-\$ 2,450$:

Example 12 preferred for $P W_{\mathrm{c}}>-\$ 2,450$, but robustness very low.
Example 11 preferred for $P W_{\mathrm{c}}<-\$ 2,450$.

Figure 18: Robustness curves for examples 11 and 12, illustrating preference reversal. (Transp.)

10.3 Example 8, p.21, Re-Visited

Example 13 Example 8, p.21, re-visited.
§ Problem: Is the following investment worthwhile, given uncertainty in attaining the MARR in each period?

- $F_{0}=-\$ 25,000=$ cost of new equipment.
- $F=\$ 8,000$ net revenue (after operating cost), $k=1, \ldots, 5$.
- $N=5=$ planning horizon.
- $M=\$ 5,000=$ market value of equipment at end of planning horizon.
- $\widetilde{i}=0.2=20 \%$ is the anticipated MARR.
- From eq.(69), p.21, the anticipated FW is:

$$
\begin{equation*}
\widetilde{F W}=M+\sum_{k=0}^{N}(1+\widetilde{i})^{N-k} F_{k} \tag{169}
\end{equation*}
$$

where $F_{k}=F$ for $k>0$.

- We desire $\widetilde{i}=0.2$, but we may not attain this high rate of return each period.
- Define a new discount rate in the k th period as:

$$
\begin{equation*}
\beta_{k}=(1+i)^{N-k}, \quad k=0, \ldots, N \tag{170}
\end{equation*}
$$

where i may vary from period to period.
The anticipated value is:

$$
\begin{equation*}
\widetilde{\beta}_{k}=(1+\widetilde{i})^{N-k}, \quad k=0, \ldots, N \tag{171}
\end{equation*}
$$

- Thus the anticipated and actual FW's are:

$$
\begin{align*}
\widetilde{F W} & =M+\sum_{k=0}^{N} \widetilde{\beta}_{k} F_{k} \tag{172}\\
F W & =M+\sum_{k=0}^{N} \beta_{k} F_{k} \tag{173}
\end{align*}
$$

- A fractional-error info-gap model for the discount rates, treating the uncertainty separately in each period, is:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{\beta: \beta_{k} \geq 0,\left|\frac{\beta_{k}-\widetilde{\beta}_{k}}{s_{k}}\right| \leq h, k=0, \ldots, N\right\}, \quad h \geq 0 \tag{174}
\end{equation*}
$$

- The uncertainty weights, s_{k}, may increase over time.
- $\beta_{k} \geq 0$ because $i \geq-1$.
- Treating the uncertainty separately in each period is a strong approximation, and really not justified. From eq.(26), p.13, we see that β_{k} is related to β_{k-1}. The full analysis is much more complicated.
- Performance requirement:

$$
\begin{equation*}
F W(\beta) \geq F W_{\mathrm{c}} \tag{175}
\end{equation*}
$$

- Robustness:

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{\beta \in \mathcal{U}(h)} F W(\beta)\right) \geq F W_{\mathrm{c}}\right\} \tag{176}
\end{equation*}
$$

- Evaluate the inner minimum, $m(h)$: inverse of the robustness. Occurs at:

$$
\begin{equation*}
\beta_{0}=\widetilde{\beta}_{0}+s_{0} h \text { because } F_{0}<0, \quad \beta_{k}=\max \left[0, \widetilde{\beta}_{k}-s_{k} h\right], k=1, \ldots, N \tag{177}
\end{equation*}
$$

So:

$$
\begin{equation*}
m(h)=M+\left(\widetilde{\beta}_{0}+s_{0} h\right) F_{0}+F \sum_{k=1}^{N} \max \left[0, \widetilde{\beta}_{k}-s_{k} h\right] \tag{178}
\end{equation*}
$$

Define:

$$
\begin{equation*}
h_{1}=\min _{1 \leq k \leq N} \frac{\widetilde{\beta}_{k}}{s_{k}} \tag{179}
\end{equation*}
$$

For $h \leq h_{1}$ we can write eq.(178) as:

$$
\begin{align*}
m(h) & =\underbrace{M+\sum_{k=0}^{N} \widetilde{\beta}_{k} F_{k}}_{\widetilde{F W}}-h \underbrace{\left(-s_{0} F_{0}+F \sum_{k=1}^{N} s_{k}\right)}_{F W^{\star}} \tag{180}\\
& =\widetilde{F W}-h F W^{\star} \tag{181}
\end{align*}
$$

Note that $F W^{\star}>0$.

- Equate eq.(181) to $F W_{\mathrm{c}}$ and solve for h to obtain part of the robustness curve:

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=\frac{\widetilde{F W}-F W_{\mathrm{c}}}{F W^{\star}}, \quad \widetilde{F W}-h_{1} F W^{\star} \leq F W_{\mathrm{c}} \leq \widetilde{F W} \tag{182}
\end{equation*}
$$

- Note possibility of crossing robustness curves and preference reversal.
- For $h>h_{1}$, successive terms in eq.(178) drop out and the slope of the robustness curve changes.
- Question: How can we plot the entire robustness curve, without the constraint $h \leq h_{1}$?

10.4 Info-Gap on A : Are PW and FW Robust Preferences the Same?

§ Continue example of section 8.1, p. 27 (constant yearly profit), where the FW, eq.(93) p.27, is:

$$
\begin{equation*}
F W=\frac{(1+i)^{N}-1}{i} A \tag{183}
\end{equation*}
$$

and the uncertainty is only in A, eq.(94) p.27, is:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{A:\left|\frac{A-\widetilde{A}}{s_{A}}\right| \leq h\right\}, \quad h \geq 0 \tag{184}
\end{equation*}
$$

and the performance requirement, eq.(95) p.27, is:

$$
\begin{equation*}
F W(A) \geq F W_{\mathrm{c}} \tag{185}
\end{equation*}
$$

$\S P W$ and $F W$ are related by eq.(66), p.20:

$$
\begin{equation*}
P W(A)=(1+i)^{-N} F W(A) \tag{186}
\end{equation*}
$$

\S Thus, from eqs.(185) and (186), the performance requirement for $P W$ is:

$$
\begin{equation*}
P W(A) \geq P W_{\mathrm{c}} \tag{187}
\end{equation*}
$$

where:

$$
\begin{equation*}
P W_{\mathrm{c}}=(1+i)^{-N} F W_{\mathrm{c}} \tag{188}
\end{equation*}
$$

§ The robustness for the $F W$ criterion is $\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)$, eq.(96) p.27, is:

$$
\begin{equation*}
\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} F W(A)\right) \geq F W_{\mathrm{c}}\right\} \tag{189}
\end{equation*}
$$

\S The robustness for the $P W$ criterion is $\widehat{h}_{p w}\left(P W_{\mathrm{c}}\right)$, is defined analogously:

$$
\begin{equation*}
\widehat{h}_{p w}\left(P W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} P W(A)\right) \geq P W_{\mathrm{c}}\right\} \tag{190}
\end{equation*}
$$

Employing eqs.(186) and (188) we obtain:

$$
\begin{align*}
\widehat{h}_{p w}\left(P W_{\mathrm{c}}\right) & =\max \left\{h:\left(\min _{A \in \mathcal{U}(h)}(1+i)^{-N} F W(A)\right) \geq(1+i)^{-N} F W_{\mathrm{c}}\right\} \tag{191}\\
& =\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right) \tag{192}
\end{align*}
$$

because $(1+i)^{-N}$ cancels out in eq.(191). The values differ, but the robustnesses are equal!
§ Consider two different configurations, $k=1$, 2, whose robustness functions are $\widehat{h}_{p w, k}\left(P W_{\mathrm{c}}\right)$ and $\widehat{h}_{f w, k}\left(F W_{\mathrm{c}}\right)$.

- From eq.(192) we see that:

$$
\begin{equation*}
\widehat{h}_{p w, 1}\left(P W_{\mathrm{c}}\right)>\widehat{h}_{p w, 2}\left(P W_{\mathrm{c}}\right) \quad \text { if and only if } \widehat{h}_{f w, 1}\left(F W_{\mathrm{c}}\right)>\widehat{h}_{f w, 2}\left(F W_{\mathrm{c}}\right) \tag{193}
\end{equation*}
$$

- Thus FW and PW robust preferences between the configurations are the same when A is the only uncertainty.

10.5 Info-Gap on i : Are PW and FW Robust Preferences the Same?

§ Continue example of section 8.1, p. 27 (constant yearly profit), where the FW, eq.(93) p.27, is:

$$
\begin{equation*}
F W=\frac{(1+i)^{N}-1}{i} A \tag{194}
\end{equation*}
$$

where i is constant but uncertain:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{i: i \geq-1,\left|\frac{i-\widetilde{i}}{s_{i}}\right| \leq h\right\}, \quad h \geq 0 \tag{195}
\end{equation*}
$$

and the performance requirement, eq.(95) p.27, is:

$$
\begin{equation*}
F W(i) \geq F W_{\mathrm{c}} \tag{196}
\end{equation*}
$$

$\S P W$ and $F W$ are related by eq.(66), p.20:

$$
\begin{equation*}
P W(i)=(1+i)^{-N} F W(i) \tag{197}
\end{equation*}
$$

\S Thus, from eqs.(196) and (197), the performance requirement for $P W$ is

$$
\begin{equation*}
P W(i) \geq P W_{\mathrm{c}} \tag{198}
\end{equation*}
$$

where:

$$
\begin{equation*}
P W_{\mathrm{c}}=(1+i)^{-N} F W_{\mathrm{c}} \tag{199}
\end{equation*}
$$

However, because i is uncertain we will write the performance requirement as:

$$
\begin{equation*}
P W(i)-(1+i)^{-N} F W_{\mathrm{c}} \geq 0 \tag{200}
\end{equation*}
$$

\S The robustness for the FW criterion is:

$$
\begin{equation*}
\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{i \in \mathcal{U}(h)} F W(i)\right) \geq F W_{\mathrm{c}}\right\} \tag{201}
\end{equation*}
$$

We re-write this as:

$$
\begin{equation*}
\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{i \in \mathcal{U}(h)}\left(F W(i)-F W_{\mathrm{c}}\right)\right) \geq 0\right\} \tag{202}
\end{equation*}
$$

Let $m_{f w}(h)$ denote the inner minimum, which is the inverse of $\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)$.
\S The robustness for the $P W$ criterion is:

$$
\begin{align*}
\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right) & =\max \left\{h:\left(\min _{i \in \mathcal{U}(h)}\left(P W(i)-(1+i)^{-N} F W_{\mathrm{c}}\right)\right) \geq 0\right\} \tag{203}\\
& =\max \left\{h:\left(\min _{i \in \mathcal{U}(h)}(1+i)^{-N}\left(F W(i)-F W_{\mathrm{c}}\right)\right) \geq 0\right\} \tag{204}
\end{align*}
$$

- Let $m_{p w}(h)$ denote the inner minimum, which is the inverse of $\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right)$.
- Unlike the case of eq.(191), p.42, the term $(1+i)^{-N}$ does not cancel out because i is uncertain.
- Thus, unlike eq.(192), we cannot (yet) conclude that $\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)$ and $\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right)$ are equal.
- However, because $(1+i)^{-N}>0$, we can conclude that:

$$
\begin{equation*}
m_{f w}(h) \geq 0 \quad \text { if and only if } \quad m_{p w}(h) \geq 0 \tag{205}
\end{equation*}
$$

- Define $\mathcal{H}_{f w}$ as the set of h values in eq.(202) whose maximum is $\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)$.
- Define $\mathcal{H}_{p w}$ as the set of h values in eq.(204) whose maximum is $\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right)$.
- Eq.(205) implies that:

$$
\begin{equation*}
h \in \mathcal{H}_{f w} \text { if and only if } h \in \mathcal{H}_{p w} \tag{206}
\end{equation*}
$$

which implies that:

$$
\begin{equation*}
\max \mathcal{H}_{f w}=\max \mathcal{H}_{p w} \tag{207}
\end{equation*}
$$

which implies that:

$$
\begin{equation*}
\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)=\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right) \tag{208}
\end{equation*}
$$

\S Thus FW and PW robust preferences between the configurations are the same when i is the only uncertainty.
§ A different proof of eq.(208) is:

- From the definition of $\widehat{h}_{f w}$, eq.(202), we conclude that:

$$
\begin{equation*}
m_{f w}\left(\widehat{h}_{f w}\right) \geq 0 \tag{209}
\end{equation*}
$$

and this implies, from eq.(205), that:

$$
\begin{equation*}
m_{p w}\left(\widehat{h}_{f w}\right) \geq 0 \tag{210}
\end{equation*}
$$

From this and from the definition of $\widehat{h}_{p w}$, eq.(204), we conclude that:

$$
\begin{equation*}
\widehat{h}_{p w} \geq \widehat{h}_{f w} \tag{211}
\end{equation*}
$$

- Likewise, from the definition of $\widehat{h}_{p w}$, eq.(204), we conclude that:

$$
\begin{equation*}
m_{p w}\left(\widehat{h}_{p w}\right) \geq 0 \tag{212}
\end{equation*}
$$

and this implies, from eq.(205), that:

$$
\begin{equation*}
m_{f w}\left(\widehat{h}_{p w}\right) \geq 0 \tag{213}
\end{equation*}
$$

From this and from the definition of $\widehat{h}_{f w}$, eq.(202), we conclude that:

$$
\begin{equation*}
\widehat{h}_{f w} \geq \widehat{h}_{p w} \tag{214}
\end{equation*}
$$

- Combining eqs.(211) and (214) we find:

$$
\begin{equation*}
\widehat{h}_{f w}\left(F W_{\mathrm{c}}\right)=\widehat{h}_{p w}\left(F W_{\mathrm{c}}\right) \tag{215}
\end{equation*}
$$

- QED.

11 Strategic Uncertainty

§ Strategic interaction:

- Competition between protagonists.
- Willful goal-oriented behavior.
- Knowledge of each other.
- Potential for deliberate interference or deception.

11.1 Preliminary Example: 1 Allocation

§ 1 allocation:

- Allocate positive quantity F_{0} at time step $t=0$.
- This results in future income F_{1} at time step $t=1$:

$$
\begin{equation*}
F_{1}=b F_{0} \tag{216}
\end{equation*}
$$

- Eq.(216) is the system model.
$\circ b$ is the "budget effectiveness".
$\circ \widetilde{b}$ is the estimated value of b, where b is uncertain.
§ A fractional-error info-gap model for uncertainty in b :

$$
\begin{equation*}
\mathcal{U}(h)=\left\{b:\left|\frac{b-\widetilde{b}}{s_{b}}\right| \leq h\right\}, \quad h \geq 0 \tag{217}
\end{equation*}
$$

§ Performance requirement:

$$
\begin{equation*}
F_{1} \geq F_{1 \mathrm{c}} \tag{218}
\end{equation*}
$$

§ Definition of robustness of allocation F_{0} :

$$
\begin{equation*}
\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)=\max \left\{h:\left(\min _{b \in \mathcal{U}(h)} F_{1}\right) \geq F_{1 \mathrm{c}}\right\} \tag{219}
\end{equation*}
$$

§ Evaluation of robustness:

- $m(h)$ denotes inner minimum in eq.(219).
- $m(h)$ is the inverse of $\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)$ thought of as a function of $F_{1 \mathrm{c}}$.
- $F_{0}>0$, so $m(h)$ occurs at $b=\widetilde{b}-s_{b} h$:

$$
\begin{equation*}
m(h)=\left(\widetilde{b}-s_{b} h\right) F_{0} \geq F_{1 \mathrm{c}} \quad \Longrightarrow \quad \widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)=\frac{\widetilde{b} F_{0}-F_{1 \mathrm{c}}}{F_{0} s_{b}} \tag{220}
\end{equation*}
$$

or zero if this is negative.

- Zeroing: no robustness when $F_{1 \mathrm{c}}=F_{1}(\widetilde{b})$.
- Trade off: robustness increases as requirement, $F_{1 \mathrm{c}}$, becomes less demanding (smaller).
- Preference reversal:
- Consider two options:

$$
\begin{array}{ll}
\left(\widetilde{b} F_{0}\right)_{1} & <\left(\widetilde{b} F_{0}\right)_{2} \quad \text { Option } 2 \text { purportedly better } \\
\left(\frac{\widetilde{b}}{s_{b}}\right)_{1}>\left(\frac{\widetilde{b}}{s_{b}}\right)_{2} \quad \text { Option } 2 \text { more uncertain } \tag{222}
\end{array}
$$

- Eq.(221) compares the horizontal intercepts at $\widehat{h}=0$.
- Eq.(222) compares the vertical intercepts at $F_{1 \mathrm{c}}=0$.
- Robustness curves cross one another: potential preference reversal.

11.2 1 Allocation with Strategic Uncertainty

§ Continuation of example in section 11.1.

§ 1 allocation:

- Invest positive quantity F_{0} at time step $t=0$.
- This results in future income F_{1} at time step $t=1$:

$$
\begin{equation*}
F_{1}=b F_{0} \tag{223}
\end{equation*}
$$

- Eq.(216) is the system model.
$\circ b$ is the "budget effectiveness" which is uncertain.

§ Budget effectiveness:

- "Our" budget effectiveness is influenced by a choice, c, made by "them":

$$
\begin{equation*}
b(c)=\widetilde{b}_{0}-\alpha c \tag{224}
\end{equation*}
$$

where $\alpha>0$. Suppose that only c is uncertain.

- α is the "aggressiveness" of their choice.
§ A fractional-error info-gap model for uncertainty in c :

$$
\begin{equation*}
\mathcal{U}(h)=\left\{c:\left|\frac{c-\tilde{c}}{s_{c}}\right| \leq h\right\}, \quad h \geq 0 \tag{225}
\end{equation*}
$$

§ Performance requirement:

$$
\begin{equation*}
F_{1} \geq F_{1 \mathrm{c}} \tag{226}
\end{equation*}
$$

Definition of robustness of allocation F_{0} :

$$
\begin{equation*}
\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)=\max \left\{h:\left(\min _{c \in \mathcal{U}(h)} F_{1}\right) \geq F_{1 \mathrm{c}}\right\} \tag{227}
\end{equation*}
$$

§ Evaluation of robustness:

- $m(h)$ denotes inner minimum in eq.(227): the inverse of $\widehat{h}\left(F_{1 c}, F_{0}\right)$ as function of $F_{1 c}$.
- $F_{0}>0$ and $\alpha>0$, so $m(h)$ occurs at $c=\tilde{c}+s_{c} h$:

$$
\begin{gather*}
m(h)=\left[\widetilde{b}_{0}-\alpha\left(\widetilde{c}+s_{c} h\right)\right] F_{0} \geq F_{1 \mathrm{c}} \Longrightarrow \tag{228}\\
\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)=\frac{\left(\widetilde{b}_{0}-\alpha \widetilde{c}\right) F_{0}-F_{1 \mathrm{c}}}{\alpha s_{c} F_{0}} \tag{229}\\
=\frac{F_{1}(\widetilde{c})-F_{1 \mathrm{c}}}{\alpha s_{c} F_{0}} \tag{230}
\end{gather*}
$$

or zero if this is negative.

- Zeroing (fig. 19): no robustness when $F_{1 \mathrm{c}}=F_{1}(\widetilde{c})$.
- Trade off (fig. 19): robustness increases as requirement, $F_{1 c}$, becomes less demanding (smaller).

Robustness, $\widehat{h}\left(F_{1 \mathrm{c}}\right)$

Critical future worth, $F_{1 \mathrm{c}}$
Figure 19: Robustness curve, eq.(229).

Robustness, $\widehat{h}\left(F_{1 \mathrm{c}}\right)$

Critical future worth, $F_{1 \mathrm{c}}$
Figure 20: Robustness curve, eq.(229).
§ Preference reversal (fig. 20):

- Consider two options:

$$
\begin{align*}
{\left[\left(\widetilde{b}_{0}-\alpha \widetilde{c}\right) F_{0}\right]_{1} } & <\left[\left(\widetilde{b}_{0}-\alpha \widetilde{c}\right) F_{0}\right]_{2} \quad \text { Option } 2 \text { purportedly better } \tag{231}\\
\left(\frac{\widetilde{b}_{0}-\alpha \widetilde{c}}{\alpha s_{c}}\right)_{1} & >\left(\frac{\widetilde{b}_{0}-\alpha \widetilde{c}}{\alpha s_{c}}\right)_{2} \text { Option } 2 \text { more uncertain } \tag{232}
\end{align*}
$$

- A possible interpretation. "They" in option 2 are:
- Purportedly less aggressive: $\alpha_{2}<\alpha_{1} \quad \Longrightarrow$ eq.(231).
- Much less well known to "us": $s_{c 2} \gg s_{c 1} \quad \Longrightarrow$ eq.(232).
- Robustness curves cross one another: potential preference reversal.

11.3 2 Allocations with Strategic Uncertainty

§ System model. 2 non-negative allocations, F_{01} and F_{02}, at time step 0:

$$
\begin{align*}
& F_{11}=b_{1} F_{01} \tag{233}\\
& F_{12}=b_{2} F_{02} \tag{234}
\end{align*}
$$

§ Budget constraint:

$$
\begin{equation*}
F_{01}+F_{02}=F_{\max }, \quad F_{0 k} \geq 0, \quad k=1,2 \tag{235}
\end{equation*}
$$

§ Performance requirement:

$$
\begin{equation*}
F_{11}+F_{12} \geq F_{1 \mathrm{c}} \tag{236}
\end{equation*}
$$

§ Budget effectiveness:

- "Our" budget effectiveness is influenced by choices, c_{k}, made by "them":

$$
\begin{equation*}
b_{k}(c)=\widetilde{b}_{0 k}-\alpha_{k} c_{k}, \quad k=1,2 \tag{237}
\end{equation*}
$$

where $\alpha_{k}>0$. Suppose that only c_{1} and c_{2} are uncertain, with estimates \widetilde{c}_{1} and \widetilde{c}_{2}.
§ Purported optimal allocation, assuming no uncertainty:

- Aim to maximize $F_{11}+F_{12}$.
- Put all funds on better anticipated investment:

$$
\begin{equation*}
\text { If: } b_{k}\left(\widetilde{c}_{k}\right)>b_{j}\left(\widetilde{c}_{j}\right) \text { then: } F_{0 k}=F_{\max } \text { and } F_{0 j}=0 \tag{238}
\end{equation*}
$$

§ A fractional-error info-gap model for uncertainty in c :

$$
\begin{equation*}
\mathcal{U}(h)=\left\{c:\left|\frac{c_{k}-\widetilde{c}_{k}}{s_{k}}\right| \leq h, \quad k=1,2\right\}, \quad h \geq 0 \tag{239}
\end{equation*}
$$

\S Definition of robustness of allocation F_{0} :

$$
\begin{equation*}
\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)=\max \left\{h:\left(\min _{c \in \mathcal{U}(h)}\left(F_{11}+F_{12}\right)\right) \geq F_{1 \mathrm{c}}\right\} \tag{240}
\end{equation*}
$$

§ Evaluation of robustness:

- $m(h)$ denotes inner minimum in eq.(240): the inverse of $\widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right)$ as function of $F_{1 \mathrm{c}}$.
- $F_{0 k} \geq 0$ and $\alpha_{k}>0$, so $m(h)$ occurs at $c_{k}=\widetilde{c}_{k}+s_{k} h, k=1,2$:

$$
\begin{align*}
m(h) & =\sum_{k=1}^{2}\left[\widetilde{b}_{0 k}-\alpha_{k}\left(\widetilde{c}_{k}+s_{k} h\right)\right] F_{0 k} \tag{241}\\
& =\underbrace{\left.\sum_{k=1}^{2}\left[\widetilde{b}_{0 k}-\alpha_{k} \widetilde{c}_{k}\right)\right] F_{0 k}}_{F_{1}(\widetilde{c})=\widetilde{b}^{T} F_{0}}-h \underbrace{\sum_{k=1}^{2} \alpha_{k} s_{k} F_{0 k}}_{\sigma^{T} F_{0}} \tag{242}\\
& =F_{1}(\widetilde{c})-h \sigma^{T} F_{0} \tag{243}
\end{align*}
$$

which defines the vectors \widetilde{b}, F_{0} and σ.

- Equate $m(h)$ to $F_{1 \mathrm{c}}$ and solve for h to obtain the robustness:

$$
\begin{align*}
m(h)=F_{1 \mathrm{c}} \Longrightarrow \widehat{h}\left(F_{1 \mathrm{c}}, F_{0}\right) & =\frac{F_{1}(\widetilde{c})-F_{1 \mathrm{c}}}{\sigma^{T} F_{0}} \tag{244}\\
& =\frac{\widetilde{b}^{T} F_{0}-F_{1 \mathrm{c}}}{\sigma^{T} F_{0}} \tag{245}
\end{align*}
$$

or zero if this is negative.

- Zeroing (fig. 21): no robustness when $F_{1 \mathrm{c}}=F_{1}(\widetilde{c})$.
- Trade off (fig. 21): robustness increases as requirement, $F_{1 c}$, becomes less demanding (smaller).

Robustness, $\widehat{h}\left(F_{1 \mathrm{c}}\right)$

Critical future worth, $F_{1 \mathrm{c}}$
Figure 21: Robustness curve, eq.(245).

Critical future worth, $F_{1 \mathrm{c}}$
Figure 22: Robustness curves for extreme allocations eqs.(246), (247).
§ Two extreme allocations, the purported best and worst allocations:

- Suppose $b_{1}\left(\widetilde{c}_{1}\right)>b_{2}\left(\widetilde{c}_{2}\right)$, so:
- $F_{01}=F_{\max }, F_{02}=0$ is purportedly best:

$$
\begin{equation*}
\widehat{h}\left(F_{01}=F_{\max }\right)=\frac{b_{1}\left(\widetilde{c}_{1}\right) F_{\max }-F_{1 \mathrm{c}}}{\sigma_{1} F_{\max }} \tag{246}
\end{equation*}
$$

- $F_{01}=0, F_{02}=F_{\max }$ is purportedly worst:

$$
\begin{equation*}
\widehat{h}\left(F_{02}=F_{\max }\right)=\frac{b_{2}\left(\widetilde{c}_{2}\right) F_{\max }-F_{1 \mathrm{c}}}{\sigma_{2} F_{\max }} \tag{247}
\end{equation*}
$$

- Also suppose: $\frac{\widetilde{b}_{1}}{\sigma_{1}}<\frac{\widetilde{b}_{2}}{\sigma_{2}}$ so first option is more uncertain.
- Preference reversal, fig. 22:

The purported best allocation is less robust than
the purported worst allocation for some $F_{\max }$'s.

- The most robust option is still allocation to only one asset, but not necessarily to the nominally optimal asset.

11.4 Asymmetric Information and Strategic Uncertainty: Employment

§ Employer's problem:

- Employer wants to hire an employee.
- Employer must offer a salary to the employee, who can refuse the offer. No negotiation.
- Employer does not know the true economic value, or the refusal price, of the employee.

§ Employer's NPV:

- $C=$ pay at end of each of N periods offered to employee.
- $A=$ uncertain income, at end of each of N periods, to employer from employee's work.
- Employer's NPV, adapting eq.(45), p.17:

$$
\begin{align*}
P W & =\underbrace{\sum_{k=1}^{N}(1+i)^{-k}(A-C)}_{\mathcal{I}} \tag{248}\\
& =\underbrace{\frac{1-(1+i)^{-N}}{i}}(A-C) \tag{249}
\end{align*}
$$

where eq.(249) employs eq.(9), p.9.

- The employer's $P W$ requirement:

$$
\begin{equation*}
P W \geq P W_{\mathrm{c}} \tag{250}
\end{equation*}
$$

§ Uncertainty about A :

- Asymmetric information:

- The employee knows things about himself that the employer does not know.
- The prospective employee states that his work will bring in \widetilde{A} each period.
- The employee thinks this is an over-estimate but does not know by how much.
- The employer adopts a fractional-error info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{A: 0 \leq \frac{\tilde{A}-A}{\widetilde{A}} \leq h\right\}, \quad h \geq 0 \tag{251}
\end{equation*}
$$

Note asymmetrical uncertainty resulting from asymmetrical information.

§ Employer's offered contract and employee's potential refusal:

- The employer will offer to pay the employee C per period.
- The employee will refuse if this is less that his refusal cost, C_{r}.
- The employer wants to choose C so probability of refusal is less than ε, where $\varepsilon \leq \frac{1}{2}$.
- The employer doesn't know employee's value of C_{r} and only has a guess of pdf of C_{r}.
- Once again: asymmetric information.
- The employer's estimate of the pdf of C_{r} is $\widetilde{p}\left(C_{\mathrm{r}}\right)$, which is $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Employer chooses $\mu<\widetilde{A}$ to reflect asymmetrical information.
- The employer's info-gap model for uncertainty in this pdf is:

$$
\begin{equation*}
\mathcal{V}(h)=\left\{p\left(C_{\mathrm{r}}\right): p\left(C_{\mathrm{r}}\right) \geq 0, \int_{-\infty}^{\infty} p\left(C_{\mathrm{r}}\right) \mathrm{d} C_{\mathrm{r}}=1,\left|\frac{p\left(C_{\mathrm{r}}\right)-\widetilde{p}\left(C_{\mathrm{r}}\right)}{\widetilde{p}\left(C_{\mathrm{r}}\right)}\right| \leq h\right\}, \quad h \geq 0 \tag{252}
\end{equation*}
$$

- The probability of refusal by the employee, of the offered value of C, is (see fig. 23, 51):

$$
\begin{equation*}
P_{\mathrm{ref}}(C \mid p)=\operatorname{Prob}\left(C_{\mathrm{r}} \geq C\right)=\int_{C}^{\infty} p\left(C_{\mathrm{r}}\right) \mathrm{d} C_{\mathrm{r}} \tag{253}
\end{equation*}
$$

Figure 23: Probability of refusal by the employee, eq.(253).

- The employer's requirement regarding employee refusal, where $\varepsilon \leq \frac{1}{2}$, is:

$$
\begin{equation*}
P_{\mathrm{ref}}(C \mid p) \leq \varepsilon \tag{254}
\end{equation*}
$$

\S Definition of the robustness:

- Overall robustness:

$$
\begin{equation*}
\widehat{h}\left(C, P W_{\mathrm{c}}, \varepsilon\right)=\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} P W(C, A)\right) \geq P W_{\mathrm{c}},\left(\max _{p \in \mathcal{V}(h)} P_{\mathrm{ref}}(C \mid p)\right) \leq \varepsilon\right\} \tag{255}
\end{equation*}
$$

- This can be expressed in terms of two sub-robustnesses.
- Robustness of PW:

$$
\begin{equation*}
\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} P W(C, A)\right) \geq P W_{\mathrm{c}}\right\} \tag{256}
\end{equation*}
$$

- Robustness of employee refusal:

$$
\begin{equation*}
\widehat{h}_{\mathrm{ref}}(C, \varepsilon)=\max \left\{h:\left(\max _{p \in \mathcal{V}(h)} P_{\mathrm{ref}}(C \mid p)\right) \leq \varepsilon\right\} \tag{257}
\end{equation*}
$$

- The overall robustness can be expressed:

$$
\begin{equation*}
\widehat{h}\left(C, P W_{\mathrm{c}}, \varepsilon\right)=\min \left[\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right), \widehat{h}_{\mathrm{ref}}(C, \varepsilon)\right] \tag{258}
\end{equation*}
$$

- Why minimum in eq.(258)?
- Both performance requirements, eqs.(250) and (254), must be satisfied, so the overall robustness is the lower of the two sub-robustnesses.
\S Evaluating $\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right)$:
- Let $m_{\mathrm{pw}}(h)$ denote the inner minimum in eq.(256).
- $m_{\mathrm{pw}}(h)$ is the inverse of $\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right)$ thought of as a function of $P W_{\mathrm{c}}$.
- Eq.(249): $P W=(A-C) \mathcal{I}$. Thus $m_{\mathrm{pw}}(h)$ occurs for $A=(1-h) \widetilde{A}$:

$$
\begin{array}{r}
m_{\mathrm{pw}}(h)=[(1-h) \widetilde{A}-C] \mathcal{I} \geq P W_{\mathrm{c}} \quad \Longrightarrow \\
\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right)=\frac{(\widetilde{A}-C) \mathcal{I}-P W_{\mathrm{c}}}{\widetilde{A} \mathcal{I}} \\
 \tag{261}\\
=\frac{P W(\widetilde{A})-P W_{\mathrm{c}}}{\widetilde{A} \mathcal{I}}
\end{array}
$$

or zero if this is negative.
\S Evaluating $\widehat{h}_{\text {ref }}(C, \varepsilon)$:

- Let $m_{\text {ref }}(h)$ denote the inner maximum in eq.(257).
- $m_{\text {ref }}(h)$ is the inverse of $\widehat{h}_{\text {ref }}(C, \varepsilon)$ thought of as a function of ε.
- Recall: $\varepsilon \leq \frac{1}{2}$.
- Thus, we must choose C to be no less than median of $\widetilde{p}\left(C_{\mathrm{r}}\right)$ because we require (see fig. 24, p.52):

$$
\begin{equation*}
P_{\mathrm{ref}}(C \mid \widetilde{p})=\int_{C}^{\infty} \widetilde{p}\left(C_{\mathrm{r}}\right) \mathrm{d} C_{\mathrm{r}} \leq \varepsilon \leq \frac{1}{2} \tag{262}
\end{equation*}
$$

Figure 24: Probability of refusal by the employee, eq.(253).

- Eq.(253): $P_{\text {ref }}(C \mid p)=\operatorname{Prob}\left(C_{\mathrm{r}} \geq C\right)=\int_{C}^{\infty} p\left(C_{\mathrm{r}}\right) \mathrm{d} C_{\mathrm{r}}$. For $h \leq 1, m_{\text {ref }}(h)$ occurs for:

$$
p\left(C_{\mathrm{r}}\right)=\left\{\begin{array}{cl}
(1+h) \widetilde{p}\left(C_{\mathrm{r}}\right), & C_{\mathrm{r}} \geq C \tag{263}\\
(1-h) \widetilde{p}\left(C_{\mathrm{r}}\right), & \text { for part of } C_{\mathrm{r}}<C \text { to normalize } p\left(C_{\mathrm{r}}\right) \\
\widetilde{p}\left(C_{\mathrm{r}}\right), & \text { for remainder of } C_{\mathrm{r}}<C
\end{array}\right.
$$

Why don't we care what "part of $C_{\mathrm{r}}<C$ " in the middle line of eq.(263)?

- Thus, for $h \leq 1$:

$$
\begin{align*}
m_{\mathrm{ref}}(h)= & \int_{C}^{\infty}(1+h) \widetilde{p}\left(C_{\mathrm{r}}\right) \mathrm{d} C_{\mathrm{r}} \tag{264}\\
& =(1+h) \operatorname{Prob}\left(C_{\mathrm{r}} \geq C \mid \widetilde{p}\right)=(1+h) \operatorname{Prob}\left(\left.\frac{C_{\mathrm{r}}-\mu}{\sigma} \geq \frac{C-\mu}{\sigma} \right\rvert\, \widetilde{p}\right) \tag{265}\\
= & (1+h)\left[1-\Phi\left(\frac{C-\mu}{\sigma}\right)\right] \leq \varepsilon \quad\left(\text { because } \frac{C_{\mathrm{r}}-\mu}{\sigma} \sim \mathcal{N}(0,1)\right) \tag{266}\\
& \Longrightarrow \quad \widehat{h}_{\mathrm{ref}}(C, \varepsilon)=\frac{\varepsilon}{1-\Phi\left(\frac{C-\mu}{\sigma}\right)}-1 \\
& \text { for } 1-\Phi\left(\frac{C-\mu}{\sigma}\right) \leq \varepsilon \leq 2\left[1-\Phi\left(\frac{C-\mu}{\sigma}\right)\right] \tag{267}
\end{align*}
$$

- Note that $\widehat{h}_{\text {ref }}(C, \varepsilon) \leq 1$ for the ε-range indicated, so assumption that $h \leq 1$ is satisfied.
- We have not derived $\widehat{h}_{\text {ref }}$ for ε outside of this range.
§ Numerical example, fig. 25, p.53:
- Potential employee states his "value" as $\widetilde{A}=1.2$.
- Employer offers $C=1$.
- Other parameters in figure.
- Increasing solid red curve in fig. 25: $\widehat{h}_{\text {ref }}(C, \varepsilon)$.
- Decreasing solid blue curve in fig. 25: $\widehat{h}_{\mathrm{pw}}(C, \varepsilon)$.
- Overall robustness, $\widehat{h}\left(C, P W_{\mathrm{c}}, \varepsilon\right)=\min \left[\widehat{h}_{\mathrm{pw}}\left(C, P W_{\mathrm{c}}\right), \widehat{h}_{\mathrm{ref}}(C, \varepsilon)\right]$, from eq.(258).
- Recall that $\widehat{h}\left(C, P W_{\mathrm{c}}, \varepsilon\right)$ varies over the plane, ε vs $P W_{\mathrm{c}}$.
- Suppose $\varepsilon=0.5$ and $P W_{\mathrm{c}}=1$, then $\widehat{h}=\widehat{h}_{\mathrm{pw}} \approx 0.3$ (blue). Pretty low robustness.
§ Numerical example, fig. 26, p.53:
- Employer offers lower salary: $C=0.9$. Other parameters the same.
- $\widehat{h}_{\mathrm{pw}}(C, \varepsilon)$ increases: blue solid to green dash. Does this make sense? Why?
- $\widehat{h}_{\text {ref }}(C, \varepsilon)$ decreases: red solid to turquoise dash. Does this make sense? Why?
- Suppose $\varepsilon=0.5$ and $P W_{\mathrm{c}}=1$, then $\widehat{h}=\widehat{h}_{\mathrm{pw}} \approx 1.2$ (dash green). Better than before. Why? Robustness for refusal decreased, but robustness for PW is smaller, and increased more.

Figure 25: Sub-robustness curves, eqs.(261) (blue) and (267) (red). $C=1.0$ (Transp.)

Figure 26: Sub-robustness curves, eqs.(261) (blue, green) and (267) (red, cyan). Solid: $C=1.0$. Dash: $C=0.9$ (Transp.)

12 Opportuneness: The Other Side of Uncertainty

12.1 Opportuneness and Uncertain Constant Yearly Profit, A

§ Return to example in section 8, p.27:

- Future worth of constant profit, eq.(12), p.9:
- $A=$ profit at end of each period.
- $i=$ reinvest at profit rate i.
- $N=$ number of periods.
- The future worth is:

$$
\begin{equation*}
F W=\underbrace{\frac{(1+i)^{N}-1}{i}}_{\mathcal{I}} A \tag{268}
\end{equation*}
$$

- Uncertainty: the constant end-of-period profit, A, is uncertain.
- $\widetilde{A}=$ known estimated profit.
- $A=$ unknown true profit.
- $s_{A}=$ error of estimate.
- Fractional-error info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{A:\left|\frac{A-\widetilde{A}}{s_{A}}\right| \leq h\right\}, \quad h \geq 0 \tag{269}
\end{equation*}
$$

- Robustness:

$$
\begin{align*}
\widehat{h}\left(F W_{\mathrm{c}}\right) & =\max \left\{h:\left(\min _{A \in \mathcal{U}(h)} F W(A)\right) \geq F W_{\mathrm{c}}\right\} \tag{270}\\
& =\frac{1}{s_{A}}\left(\widetilde{A}-\frac{F W_{\mathrm{c}}}{\mathcal{I}}\right) \tag{271}
\end{align*}
$$

§ Opportuneness:

- $F W_{\mathrm{w}}$ is a wonderful windfall value of $F W$:

$$
\begin{equation*}
F W_{\mathrm{w}} \geq F W(\widetilde{A}) \geq F W_{\mathrm{c}} \tag{272}
\end{equation*}
$$

- Opportuneness:
- Uncertainty is good: The potential for better-than-expected outcome.
- Distinct from robustness for which uncertainty is bad.
- The investment is opportune if $F W_{\mathrm{w}}$ is possible at low uncertainty.
- Investment 1 is more opportune than investment 2 if $F W_{\text {w }}$ is possible at lower uncertainty with 1 than with 2.
- Definition of opportuneness function:

$$
\begin{equation*}
\widehat{\beta}\left(F W_{\mathrm{w}}\right)=\min \left\{h:\left(\max _{A \in \mathcal{U}(h)} F W(A)\right) \geq F W_{\mathrm{w}}\right\} \tag{273}
\end{equation*}
$$

- Compare with robustness, eq.(270): exchange of min and max operators.
- Meaning of opportuneness function: small $\widehat{\beta}$ is good; large $\widehat{\beta}$ is bad:
$\widehat{\beta}$ is immunity against windfall.
- Meaning of robustness function: small \widehat{h} is bad; large \widehat{h} is good:
\widehat{h} is immunity against failure.

§ Evaluating the opportuneness.

- Aspiration exceeds anticipation:

$$
\begin{equation*}
F W_{\mathrm{w}}>F W(\widetilde{A}) \tag{274}
\end{equation*}
$$

Thus we need favorable surprise to enable $F W_{\text {w }}$.

- Question: What is opportuneness for $F W_{\mathrm{w}} \leq F W(\widetilde{A})$?
- $M(h)$ is inner maximum in eq.(273): the inverse of $\widehat{\beta}\left(F W_{\mathrm{w}}\right)$.
- $M(h)$ occurs for $A=\widetilde{A}+s_{A} h$:

$$
\begin{equation*}
M(h)=\mathcal{I}\left(\widetilde{A}+s_{A} h\right) \geq F W_{\mathrm{w}} \Longrightarrow \widehat{\beta}\left(F W_{\mathrm{w}}\right)=\frac{1}{s_{A}}\left(\frac{F W_{\mathrm{w}}}{\mathcal{I}}-\widetilde{A}\right) \tag{275}
\end{equation*}
$$

- Zeroing: No uncertainty needed to enable the anticipated value: $F W_{\mathrm{w}}=F W(\widetilde{A})$.
- Trade off: Opportuneness gets worse ($\widehat{\beta}$ bigger) as aspiration increases ($F W_{\mathrm{w}}$ bigger).
§ Immunity functions: sympathetic or antagonistic:
- Combine eqs.(271) and (275):

$$
\begin{equation*}
\widehat{h}=-\widehat{\beta}+\frac{F W_{\mathrm{w}}-F W_{\mathrm{c}}}{s_{A} \mathcal{I}} \tag{276}
\end{equation*}
$$

Note: 2nd term on right is non-negative: $F W_{\mathrm{w}} \geq F W_{\mathrm{c}}$.

- Robustness and opportuneness are sympathetic wrt choice of \widetilde{A} :

Any change in \widetilde{A} that improves robustness also improves opportuneness:

$$
\begin{equation*}
\frac{\partial \widehat{h}}{\partial \widetilde{A}}>0 \text { if and only if } \frac{\partial \widehat{\beta}}{\partial \widetilde{A}}<0 \tag{277}
\end{equation*}
$$

Does this make sense? Why?

- Robustness and opportuneness are antagonistic wrt choice of s_{A} :

Any change in s_{A} that improves robustness worsens opportuneness:

$$
\begin{equation*}
\frac{\partial \widehat{h}}{\partial s_{A}}<0 \text { if and only if } \frac{\partial \widehat{\beta}}{\partial s_{A}}<0 \tag{278}
\end{equation*}
$$

Does this make sense? Why?

- Robustness and opportuneness are sympathetic wrt choice of x if and only if:

$$
\begin{equation*}
\frac{\partial \widehat{h}}{\partial x} \frac{\partial \widehat{\beta}}{\partial x}<0 \tag{279}
\end{equation*}
$$

Figure 27: Robustness and opportuneness curves.

12.2 Robustness and Opportuneness: Sellers and Buyers

\S Buyers, sellers and diminishing marginal utility: ${ }^{18}$

- Ed has lots of oranges. He eats oranges all day. He would love an apple.

Ed's marginal utility for oranges is low and for apples is high.

- Ned has lots of apples. He eats apples all day. He would love an orange.

Ned's marginal utility for apples is low and for oranges is high.

- When Ed and Ned meet they rapidly make a deal to exchanges some apples and oranges.
§ This marginal utility explanation does not explain all transactions, especially exchanges of monetary instruments: money for money.
\S Continue example in section 12.1, p. 54.
§ Ed wants to own an investment with confidence for moderate earnings.
- Ed's critical $F W$ is $F W_{\text {c,ed }}$.
- The robustness, eq.(271), p.54, is (see fig. 27, p.56):

$$
\begin{equation*}
\widehat{h}\left(F W_{\mathrm{c}}\right)=\frac{1}{s_{A}}\left(\widetilde{A}-\frac{F W_{\mathrm{c}}}{\mathcal{I}}\right) \tag{280}
\end{equation*}
$$

- The robustness-immunity against failure-for $F W_{c, \text { ed }}$ is low so Ed wants to sell.
§ Ned wants to own an investment with potential for high earnings.
- Ned's windfall $F W$ is $F W_{\text {w,ned }}$.
- The opportuneness function, eq.(275), p.55, is (see fig. 27, p.56):

$$
\begin{equation*}
\widehat{\beta}\left(F W_{\mathrm{w}}\right)=\frac{1}{s_{A}}\left(\frac{F W_{\mathrm{w}}}{\mathcal{I}}-\widetilde{A}\right) \tag{281}
\end{equation*}
$$

- The opportuneness—immunity against windfall— for $F W_{\mathrm{w}, \text { ned }}$ is low so Ed wants to buy.
§ Ed, meet Ned. Ned, meet Ed. Let's make a deal!

[^9]
12.3 Robustness Indifference and Its Opportuneness Resolution

\S Continue example of section 12.2, p.56.
§ The robustness and opportuneness functions are:

$$
\begin{align*}
\widehat{h}\left(F W_{\mathrm{c}}\right) & =\frac{1}{s_{A}}\left(\widetilde{A}-\frac{F W_{\mathrm{c}}}{\mathcal{I}}\right) \tag{282}\\
\widehat{\beta}\left(F W_{\mathrm{w}}\right) & =\frac{1}{s_{A}}\left(\frac{F W_{\mathrm{w}}}{\mathcal{I}}-\widetilde{A}\right) \tag{283}
\end{align*}
$$

\S Choice between two plans, \widetilde{A}, s_{A} and $\widetilde{A}^{\prime}, s_{A}^{\prime}$, where:

$$
\begin{equation*}
\widetilde{A}<\widetilde{A}^{\prime}, \quad \frac{\tilde{A}}{s_{A}}>\frac{\widetilde{A}^{\prime}}{s_{A}^{\prime}} \tag{284}
\end{equation*}
$$

- The left relation implies that the 'prime' option is purportedly better.
- The right relation implies that the 'prime' option is more uncertain.
- The robustness curves cross at $F W_{\times}$(see fig. 28):

Robust indifference between plans for $F W_{\mathrm{c}} \approx F W_{\times}$.

- The opportuneness curves do not cross (see fig. 28):

Opportuneness preference for plan $\widetilde{A}^{\prime}, s_{A}^{\prime}$.

- Opportuneness can resolve a robust indifference.

Figure 28: Robustness and opportuneness curves for the two options in eq.(284).

[^0]: ${ }^{0} \backslash$ lectures \backslash Econ-Dec-Mak \backslash money-time02.tex $\quad 10.4$.2022 (C) Yakov Ben-Haim 2022.

[^1]: ${ }^{1}$ Yakov Ben-Haim, 2000, Why the best engineers should study humanities, Int/ J for Mechanical Engineering Education, 28: 195-200. Link to pre-print on: http://info-gap.com/content.php?id=23

[^2]: ${ }^{2} O E D$, online, 21.9.2012.
 ${ }^{3}$ Exodus, 22:24.
 ${ }^{4}$ Interest: rebeet.
 ${ }^{5}$ Principal: keren.

[^3]: ${ }^{6}$ Compound interest: rebeet de'rebeet, rebeet tzvurah.

[^4]: ${ }^{7}$ Annuity: Kitzvah shnatit.

[^5]: ${ }^{8}$ Shiur ha'revach ha'kvil ha'minimali.

[^6]: ${ }^{9}$ Igrot hov.
 ${ }^{10} \mathrm{http}: / / e n . w i k i p e d i a . o r g /$ wiki/Bond_(finance)
 ${ }^{11}$ miniot.
 ${ }^{12}$ niyarot erech.
 ${ }^{13}$ Discount rate: hivun.
 ${ }^{14} \mathrm{http}: / / \mathrm{en}$.wikipedia.org/wiki/Bond_valuation
 ${ }^{15}$ DeGarmo, p. 148.

[^7]: ${ }^{16}$ There are other constraints on an interest rate, i, but we won't worry about them now.

[^8]: ${ }^{17}$ This allows $1-i<0$ which may not be allowed or meaningful. However, we will see that $1-i \geq 0$ for all $h \leq \widehat{h}$.

[^9]: ${ }^{18}$ Marginal utility: toelet shulit.

