Lecture Notes on
The Benefit-Cost Ratio
Yakov Ben-Haim
Yitzhak Moda'i Chair in Technology and Economics
Faculty of Mechanical Engineering
Technion - Israel Institute of Technology
Haifa 32000 Israel
yakov@technion.ac.il
http://info-gap.com http://yakovbh.net.technion.ac.il/

Source material:

- DeGarmo, E. Paul, William G. Sullivan, James A. Bontadelli and Elin M. Wicks, 1997, Engineering Economy. 10th ed., chapter 6, Prentice-Hall, Upper Saddle River, NJ.
- Ben-Haim, Yakov, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.
- Ben-Haim, Yakov, 2006, Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edition, Academic Press, London.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1 Incommensurate Benefits and Costs 2
2 Monetizing the Benefit-Cost Ratio 5
2.1 Generic Monetization 5
2.2 Do PW and BCR Always Agree on Prioritization? 7
2.3 Monetizing Human Life 8
2.4 Monetizing Human Life with Uncertain L 9
2.5 Monetizing Human Life with Uncertain L and i_{b} 11
2.6 Monetizing Human Life with Uncertain L, i_{b}, K and C 13
2.7 Constant But Uncertain Interest Rates i_{b} and i_{c} 15
2.8 Benefits, Dis-Benefits and Conflicting Interests 17
3 Using the BCR with Incommensurate Benefits and Costs 19
3.1 Robotic Position Accuracy 19
3.2 Robotic Position Accuracy: Comparing 3 Designs 21
3.3 Robotic Position Accuracy with Uncertain Benefit 23
3.4 Discounting Future Non-Monetary Benefit: Sorties of a Drone 25
3.5 Uncertain Discounting of Future Non-Monetary Benefit: Sorties of a Drone 28
3.6 Probabilistic Uncertainty of Non-Monetary Benefit: Sorties of a Drone 29
3.7 Info-Gap Uncertain PDF of Non-Monetary Benefit: Sorties of a Drone 31

[^0]
1 Incommensurate Benefits and Costs

§ Engineering design.

- Robotic motion.
- Benefits: ${ }^{1}$ stability, locational accuracy (mm).
- Costs: components, assembly (\$, or years of development).
- Airframe design.
- Benefits: payload (kg) or speed (m/s).
- Costs: materials and construction (\$), or size $\left(\mathrm{m}^{3}\right)$, or weight (kg).
- Communication technology.
- Benefits: transmission rate (bytes/s).
- Costs: materials and manufacturing (\$) or environmental damage (e.g. lost species).

§ Infra-structure projects:

- Roads.
- Benefits: transportation (\# people $\times \mathrm{km}$).
- Costs: materials, labor (\$), or political "capital" lost due to taxation.
- Parks.
- Benefits: recreation (\# people-days).
- Costs: materials, labor, land (\$).
- Sewage.
- Benefits: public health (\# saved lives).
- Costs: materials, labor (\$).
- Flood control.
- Benefits: flood safety (\# saved lives and property).
- Costs: materials, labor (\$).

National defense.

- Benefits: public security (\# saved lives).
- Costs: materials, labor (\$), or opportunity costs of lost health, arts, etc.

§ The goal:

- Given several alternative options, each technologically acceptable.
- Select one option or prioritize all the options.
\S The problem: benefit and cost have different units.
- The costs are (often) monetary, but the benefits (and dis-benefits) are not.
- Net worth, "benefit [e.g. mm] - cost [\$]" is dimensionally inconsistent.
- Thus we cannot simply apply the capital investment and money-time relations developed previously. ${ }^{2}$
§ The approach: benefit-cost ratio (BCR).
Benefit-cost ratio is meaningful. E.g.:
Benefit (e.g. \# lives or distance in km)
Cost (\$)

[^1]
§ Additional problems:

- Uncertainty.
- Political considerations.
- The groups that benefit may not be the only groups that pay the cost.

$\S B C R$ commonly used to evaluate public projects.

\S Private vs Public projects: ${ }^{3}$

- Purpose:
- Private: provide goods and/or services at a profit. Maximize or satisfice profit.
- Public: Provide services without profit; protect lives and property; provide jobs.
- Source of capital:
- Private: Private investors and lenders.
- Public: Taxation and private lenders.
- Method of financing:
- Private: Individual ownership; partnerships; corporations.
- Public: Taxation; govt bonds; user fees.
- Nature of benefits:
- Private: Monetary.
- Public: Often not monetary or difficult to monetize.
- Measure of efficiency:
- Private: rate of return on capital.
- Public: Very difficult; comparisons difficult.
- Multiplicity of purposes:
- Private: Not common.
- Public: Common. E.g.: Dam stores water, protects property, provides recreation.
- Conflict among purposes:
- Private: Uncommon.
- Public: Common. E.g.: public highways enable transport but endanger ecology.
- Conflict of interests among stake holders:
- Private: Uncommon. Only one stake holder, or many with a common profit motive.
- Public: Common. Often several or many stake holders.
- Project duration:
- Private: Usually short to moderate, 5-20 years.
- Public: Often long: 20-60 years or more.
- Beneficiary:
- Private: Project owner(s) or client.
- Public: General public.
- Relation between beneficiaries and suppliers of capital:
- Private: Usually direct: same agents.
- Public: Usually indirect or partial, via taxation.
- Effect of politics:
- Private: Little to moderate.
- Public: Frequent. Short-term tenure of decision makers, pressure groups, zoning and legal restrictions.

[^2]
2 Monetizing the Benefit-Cost Ratio

2.1 Generic Monetization

§ Suppose we can monetize the benefits. E.g.: the cost (value) of a human life.

- $N=$ number of periods.
- $C_{n}=$ operating cost (dollars) at end of period n.
- $S=$ initial capital investment at start of period 1 .
- $i_{c}=$ interest rate on capital.
- Large i_{c} (e.g. $i_{c}=0.15$) means:
- Spending $\$ 1$ now is the same as spending many \$'s later, namely $\$\left(1+i_{c}\right)^{n} 1$ at time n.
- Spending many \$'s later is no more difficult than spending \$1 now, because later we will be richer.
- Present worth of initial investment and costs: ${ }^{4}$

$$
\begin{equation*}
C_{p w}=S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n} \tag{2}
\end{equation*}
$$

- $B_{n}=$ monetized benefit (dollars) at end of period n.
- $i_{b}=$ discount factor on benefits, reflecting, for instance,
future technological improvements or economic growth, implying enhanced future abilities.
- Large i_{b} (e.g. $i_{b}=0.5$) means:
- Gaining \$1 now is the same as gaining many \$'s later, namely $\$\left(1+i_{b}\right)^{n} 1$ at time n.
- Gaining many \$'s later is no more valuable than gaining \$1 now, because later we will be richer.
- Large economic or technological growth.
- Note different discount rates for costs and benefits because costs and benefits are substantively different.
This is different from ordinary time value of money.
- Present worth of the benefits:

$$
\begin{equation*}
B_{p w}=\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} B_{n} \tag{3}
\end{equation*}
$$

- The $B C R$ is:

$$
\begin{align*}
B C R & =\frac{B_{p w}}{C_{p w}} \tag{4}\\
& =\frac{\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} B_{n}}{S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n}} \tag{5}
\end{align*}
$$

- The project is worthwhile, from a benefit-cost perspective, if:

$$
\begin{equation*}
B C R>1 \tag{6}
\end{equation*}
$$

- The present worth $(P W)$ of the project is:

$$
\begin{align*}
P W & =B_{p w}-C_{p w} \tag{7}\\
& =\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} B_{n}-S-\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n} \tag{8}
\end{align*}
$$

[^3]- The project is worthwhile, from a $P W$ perspective, if:

$$
\begin{equation*}
P W>0 \tag{9}
\end{equation*}
$$

- Question: Will eqs.(6) and (9) always:
- Decide the same on any given project? Yes: $P W>0$ if and only if $B C R>1$.
- Prioritize projects the same? Not always, as we will see.

2.2 Do PW and BCR Always Agree on Prioritization?

- Consider two projects, 1 and 2, with notation of section 2.1, p. 5 and:
- $C_{j}=C_{p w}$ for project $j=1$ or 2, eq.(2).
- $B_{j}=B_{p w}$ for project $j=1$ or 2, eq.(3).
- $S_{j}=S$ for project $j=1$ or 2 .
- Suppose:

$$
\begin{equation*}
P W_{1}=B_{1}-S_{1}-C_{1}>B_{2}-S_{2}-C_{2}=P W_{2} \tag{10}
\end{equation*}
$$

So project 1 is $P W$-preferred.

- But suppose:

$$
\begin{equation*}
S_{1}+C_{1}=S_{2}+C_{2}+D \quad \text { and } B_{1}=B_{2}+d \quad \text { where } D>0, d>0 \tag{11}
\end{equation*}
$$

Question: What dilemma is embedded in these relations? Is it a BCR or a PW dilemma? Or both? Thus:

$$
\begin{equation*}
P W_{1}=B_{2}+d-\left(S_{2}+C_{2}+D\right)=P W_{2}+d-D \tag{12}
\end{equation*}
$$

Eqs.(10) and (12) imply:

$$
\begin{equation*}
d>D \tag{13}
\end{equation*}
$$

- Eq.(11) implies:

$$
\begin{equation*}
B C R_{1}=\frac{B_{1}}{S_{1}+C_{1}}=\frac{B_{2}+d}{S_{2}+C_{2}+D} \tag{14}
\end{equation*}
$$

- Hence project $\mathbf{2}$ is BCR-preferred if:

$$
\begin{array}{rlrl}
& B C R_{1} & <B C R_{2} \\
& \Longleftrightarrow & \frac{B_{2}+d}{S_{2}+C_{2}+D} & <\frac{B_{2}}{S_{2}+C_{2}} \\
& \Longleftrightarrow & \left(B_{2}+d\right)\left(S_{2}+C_{2}\right) & <B_{2}\left(S_{2}+C_{2}+D\right) \\
& \Longleftrightarrow & d\left(S_{2}+C_{2}\right) & <B_{2} D \\
& \Longleftrightarrow & \frac{d}{D} & <\frac{B_{2}}{S_{2}+C_{2}} \\
& \Longleftrightarrow & \frac{d}{D} & <B C R_{2} \tag{20}
\end{array}
$$

So project 2 is BCR-preferred if and only if eq.(20) holds.

- Eqs.(10)-(13) and (20) can all hold, so
$P W$ and BCR can disagree on prioritization of the projects.
- Why is this important?
- Is one method ($P W$ or $B C R$) right and the other wrong?
- How should you choose which method to use? Perhaps rank them by robustness to uncertainty.

2.3 Monetizing Human Life

\S Continue section 2.1, p.5, with this benefit function:

- $B_{n}=K_{n} L$ where:
- $L=$ value in dollars of a human life .
- $K_{n}=$ number of lives saved at end of period n.
- From eqs.(4) and (5), p.5, the BCR is:

$$
\begin{align*}
B C R & =\frac{B_{p w}}{C_{p w}} \tag{21}\\
& =\frac{L \sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} K_{n}}{S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n}} \tag{22}
\end{align*}
$$

- Consider following numerical values:
- $N=40$ years.
- $S=\$ 1,000,000$.
- $C_{n}=\$ 500,000$ each year.
- $K_{n}=100$ each year.
- $L=\$ 50,000$.
- $i_{c}=0.05$. Interest rate on capital.
$\circ i_{b}=0.1$. Discount rate on future lives.
What does $i_{b}>i_{c}$ imply? (Perhaps: large anticipated future population)
- The BCR of eq.(22) is:

$$
\begin{align*}
B C R & =\frac{L K \sum_{n=1}^{N}\left(1+i_{b}\right)^{-n}}{S+C \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}} \tag{23}\\
& =\frac{L K \frac{1-\left(1+i_{b}\right)^{-N}}{i_{b}}}{S+C \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}} \tag{24}\\
& =\frac{L K \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)} \tag{25}
\end{align*}
$$

Where $\delta_{f}(i)$ is a "discount function:"

$$
\begin{equation*}
\delta_{f}(i)=\frac{1-(1+i)^{-N}}{i} \tag{26}
\end{equation*}
$$

- We find:
- $\delta_{f}\left(i_{b}\right)=9.7791, \delta_{f}\left(i_{c}\right)=17.1591, \quad B C R=5.1041$.
- Project is highly justified based on the $B C R$ analysis:
$\$ 5.1$ of present-worth benefit for each $\$ 1$ of present-worth cost.

2.4 Monetizing Human Life with Uncertain L

Figure 1: Robustness curve, eq.(32), with parameter values of section 2.3 and $s_{L}=0.3 \widetilde{L}=\$ 15,000$.
\S Continue section 2.3, p.8, with uncertain L :

$$
\begin{equation*}
\mathcal{U}(h)=\left\{L:\left|\frac{L-\widetilde{L}}{s_{L}}\right| \leq h\right\}, \quad h \geq 0 \tag{27}
\end{equation*}
$$

- Require: $B C R(L) \geq B C R_{\text {c }}$.
- Robustness:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{L \in \mathcal{U}(h)} B C R(L)\right) \geq B C R_{c}\right\} \tag{28}
\end{equation*}
$$

- Inner minimum, $m(h)$, occurs at $L=\widetilde{L}-s_{L} h$. From eq.(25), p.8:

$$
\begin{equation*}
m(h)=\underbrace{\frac{K \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)}}_{Q=B C R(\widetilde{L}) / \widetilde{L}}\left(\widetilde{L}-s_{L} h\right) \tag{29}
\end{equation*}
$$

- Equate this to $B C R_{\mathrm{c}}$ and solve for h to find robustness:

$$
\begin{align*}
\widehat{h}\left(B C R_{\mathrm{c}}\right) & =\frac{Q \widetilde{L}-B C R_{\mathrm{c}}}{s_{L} Q} \tag{30}\\
& =\frac{B C R(\widetilde{L})-B C R_{\mathrm{c}}}{s_{L} B C R(\widetilde{L}) / \widetilde{L}} \tag{31}\\
& =\frac{\widetilde{L}}{s_{L}}\left(1-\frac{B C R_{\mathrm{c}}}{B C R(\widetilde{L})}\right) \quad \text { or zero if this is negative } \tag{32}
\end{align*}
$$

- Zeroing: $\widehat{h}[B C R(\widetilde{L})]=0$.
- Trade off: slope $=-\frac{1}{s_{L} Q}=-\frac{\widetilde{L}}{s_{L} B C R(\widetilde{L})}$.

Question: Do we want small or large negative slope? See fig. 2, p.10.

- Looking from the top: \widehat{h} decreases fast; looks bad.
- Looking from the bottom: \widehat{h} increases fast; looks good.

Steep slope: low cost of robustness: is that good or bad?
Low cost of robustness if $\widetilde{L} \gg s_{L}$ (low uncertainty) or if $B C R(\widetilde{L})$ is small (low value).

- See fig. 1 with numerical values from section 2.3, p.8, and $s_{L}=0.3 \widetilde{L}=\$ 15,000$.
- Moderate robustness at moderate $B C R_{\mathrm{c}}$, fig. 1:
- Question: Could you responsible sell this program with a BCR of 4 or 5 ?
- $\widehat{h}\left(B C R_{\mathrm{c}}=1\right)=2.7$.
- $\widehat{h}\left(B C R_{\mathrm{c}}=2\right)=2.0$.
- The project looks BCR-plausible, even with uncertainty in L.

Figure 2: Robustness curve, eq.(32), with parameter values of section 2.3 and $s_{L}=0.3 \widetilde{L}=\$ 15,000$.

2.5 Monetizing Human Life with Uncertain L and i_{b}

\S Continue section 2.3, p.8, with uncertain L and i_{b}. Assume that i_{b} is constant but uncertain:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{L, i_{b}:\left|\frac{L-\widetilde{L}}{s_{L}}\right| \leq h, i_{b}>-1,\left|\frac{i_{b}-\widetilde{i}_{b}}{s_{i}}\right| \leq h\right\}, \quad h \geq 0 \tag{33}
\end{equation*}
$$

- Require: $\operatorname{BCR}\left(L, i_{b}\right) \geq B C R_{\mathrm{c}}$.
- Robustness:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{L, i_{b} \in \mathcal{U}(h)} B C R\left(L, i_{b}\right)\right) \geq B C R_{c}\right\} \tag{34}
\end{equation*}
$$

- From eq.(23), p.8, inner minimum, $m(h)$, occurs at:
- $L=\widetilde{L}-s_{L} h$.
- $i_{b}=\widetilde{i}_{b}+s_{i} h$ (Why? See eq.(22), p.8.) if $\widetilde{L}-s_{L} h \geq 0$ (Why?) or $h \leq \widetilde{L} / s_{L}$.

$$
\begin{align*}
m(h) & =\frac{K \sum_{n=1}^{N}\left(1+\widetilde{i}_{b}+s_{i} h\right)^{-n}}{S+C \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}}\left(\widetilde{L}-s_{L} h\right) \tag{35}\\
& =\frac{K \frac{1-\left(1+\widetilde{i}_{b}+s_{i} h\right)^{-N}}{\tilde{i}_{b}+s_{i} h}}{S+C \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}}\left(\widetilde{L}-s_{L} h\right) \tag{36}\\
& =\frac{\left.K \delta_{f} \widetilde{\widetilde{i}_{b}}+s_{i} h\right)}{S+C \delta_{f}\left(i_{c}\right)}\left(\widetilde{L}-s_{L} h\right) \text { for } h \leq \widetilde{L} / s_{L} \tag{37}
\end{align*}
$$

- $m(h)$ is the inverse of the robustness:

$$
\begin{equation*}
m(h)=B C R_{\mathrm{c}} \quad \Longleftrightarrow \widehat{h}\left(B C R_{\mathrm{c}}\right)=h \tag{38}
\end{equation*}
$$

- See fig. 4 with numerical values from section 2.3 , p.8, and $s_{L}=0.3 \widetilde{L}=\$ 15,000$ and $s_{i}=0.3 \widetilde{i}_{b}=0.03$.
- Moderate robustness at moderate $B C R_{\mathrm{c}}$, fig. 4:
- $\widehat{h}\left(B C R_{\mathrm{c}}=1\right)=2.3$.
- $\widehat{h}\left(B C R_{\mathrm{c}}=2\right)=1.5$.
- The project still looks BCR-plausible, even with uncertainty in L and i_{b}.
- Only slightly less robust than section 2.4, fig. 3. Intercepts are the same:

Horizontal intercept at $B C R_{\mathrm{c}}=B C R\left(\widetilde{L}, \widetilde{i}_{b}\right)=5.1041$.
Vertical intercept at $h=\widetilde{L} / s_{L}=1 / 0.3=3.33$.

Figure 3: Robustness curve, eq.(32), with parameter values of section 2.3 and $s_{L}=0.3 \widetilde{L}=\$ 15,000$. Same as fig. 1, p.9.

Figure 4: Robustness curve, eq.(37), with parameter values of section 2.3 and $s_{L}=$ $0.3 \widetilde{L}=\$ 15,000$ and $s_{i}=$ $0.3 \widetilde{i}_{b}=0.03$.

2.6 Monetizing Human Life with Uncertain L, i_{b}, K and C

\S Continue with BCR from eq.(22), p.8.
\S Continue section 2.3, p.8, with uncertain L, i_{b}, K and C, where i_{b} is constant but uncertain:
$\mathcal{U}(h)=\left\{L, i_{b}, K, C:\left|\frac{L-\widetilde{L}}{s_{L}}\right| \leq h, i_{b}>-1,\left|\frac{i_{b}-\widetilde{i}_{b}}{s_{i}}\right| \leq h,\left|\frac{K-\widetilde{K}}{s_{K}}\right| \leq h,\left|\frac{C-\widetilde{C}}{s_{C}}\right| \leq h,\right\}, \quad h \geq 0$

- Require: $\operatorname{BCR}\left(L, i_{b}, K, C\right) \geq B C R_{\mathrm{c}}$.
- Robustness:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{L, i_{b}, K, C \in \mathcal{U}(h)} B C R\left(L, i_{b}, K, C\right)\right) \geq B C R_{c}\right\} \tag{40}
\end{equation*}
$$

- From eq.(23), p.8, inner minimum, $m(h)$, for $h \leq \min \left(\widetilde{L} / s_{L}, \widetilde{K} / s_{K}\right)$, occurs at:
- $L=\widetilde{L}-s_{L} h . K=\widetilde{K}-s_{K} h . C=\widetilde{C}+s_{C} h$.
- $i_{b}=\widetilde{i}_{b}+s_{i} h$.

$$
\begin{align*}
m(h) & =\frac{\sum_{n=1}^{N}\left(1+\widetilde{i}_{b}+s_{i} h\right)^{-n}}{S+\left(\widetilde{C}+s_{C} h\right) \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}}\left(\widetilde{L}-s_{L} h\right)\left(\widetilde{K}-s_{K} h\right) \tag{41}\\
& =\frac{\frac{1-\left(1+\widetilde{i}_{b}+s_{i} h\right)^{-N}}{\tilde{i}_{b}+s_{i} h}}{S+\left(\widetilde{C}+s_{C} h\right) \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}}\left(\widetilde{L}-s_{L} h\right)\left(\widetilde{K}-s_{K} h\right) \tag{42}\\
& =\frac{\delta_{f} \widetilde{\overbrace{b}}+s_{i} h)}{S+\left(\widetilde{C}+s_{C} h\right) \delta_{f}\left(i_{c}\right)}\left(\widetilde{L}-s_{L} h\right)\left(\widetilde{K}-s_{K} h\right) \text { for } h \leq \min \left(\widetilde{L} / s_{L}, \widetilde{K} / s_{K}\right) \tag{43}
\end{align*}
$$

- $m(h)$ is the inverse of the robustness:

$$
\begin{equation*}
m(h)=B C R_{\mathrm{c}} \quad \Longrightarrow \quad \widehat{h}\left(B C R_{\mathrm{c}}\right)=h \tag{44}
\end{equation*}
$$

- See fig. 7 with numerical values from section 2.3, p.8, and $s_{L}=0.3 \widetilde{L}=\$ 15,000, s_{i}=0.1 \widetilde{i}_{b}=0.03, s_{K}=0.3 \widetilde{K}=30, s_{C}=0.1 \widetilde{C}=\$ 50,000$.
- Low robustness at moderate $B C R_{\mathrm{c}}$, fig 7:
- $\widehat{h}\left(B C R_{\mathrm{c}}=1\right)=1.5$.
- $\widehat{h}\left(B C R_{\mathrm{c}}=2\right)=0.91$.
- The project looks barely BCR-plausible with uncertainty in L, i_{b}, K and C.
- Less robust than section 2.4 (fig 5) or section 2.5 (fig 6). Intercepts are the same:

Horizontal intercept at $B C R_{\mathrm{c}}=B C R\left(\widetilde{L}, \widetilde{i}_{b}\right)=5.1041$.
Vertical intercept at $h=\min \left(\widetilde{L} / s_{L}, \widetilde{K} / s_{K}\right)=1 / 0.3=3.33$.

Figure 5: Robustness curve, eq.(32), with parameter values of section 2.3 and $s_{L}=$ $0.3 \widetilde{L}=\$ 15,000$. Same as fig. 1, p.9.

Figure 6: Robustness curve, eq.(37), with parameter values of section 2.3 and $s_{L}=$ $0.3 \widetilde{L}=\$ 15,000$ and $s_{i}=$ $0.3 \tilde{i}_{b}=0.03$. Same as fig. 4 , p. 12 .

Figure 7: Robustness curve, eq.(43), with parameter values of section 2.3 and $s_{L}=$ $0.3 \widetilde{L}=\$ 15,000, s_{i}=0.1 \widetilde{i}_{b}=$ $0.03, s_{K}=0.1 K=30, s_{C}=$ $0.1 C=\$ 50,000$.

2.7 Constant But Uncertain Interest Rates i_{b} and i_{c}

§ Continue section 2.3, p.8, with constant but uncertain interest rates.

- BCR of eq.(5), p.5, with constant B and C :

$$
\begin{align*}
B C R & =\frac{B \sum_{n=1}^{N}\left(1+i_{b}\right)^{-n}}{S+C \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}} \tag{45}\\
& =\frac{B \frac{1-\left(1+i_{b}\right)^{-N}}{i_{b}}}{S+C \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}} \tag{46}\\
& =\frac{B \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)}, \quad \delta_{f}(i) \text { defined in eq.(26), p.8 } \tag{47}
\end{align*}
$$

- Interest rate for benefits, i_{b}, highly uncertain. Diverse criteria for choosing i_{b} : 5
- Opportunity cost to government.
- Opportunity cost to tax payers.
- Subjective discount rate on future population growth or technological development.
- Interest rate for costs, i_{c}, uncertain:
- Future cost of money uncertain.
- Future financing opportunities uncertain.
- Numerical values:
- $B=\$ 5,000,000$.
- $C=\$ 500,000$.
- $S=\$ 1,000,000$.
- $N=40$ years.
- BCR increases as i_{b} decreases (Why?), strongly for $i_{b}<0.1$, fig. 8.
- Small i_{b} implies future benefits are nearly as important as present benefits.
- Large i_{b} ignores (discounts) the future.
- Implication of fig. 8:
including future benefits (small i_{b}) makes the present more attractive (large BCR).
- BCR increases as i_{c} increases (Why different from i_{b} ?), fig. 9.
- Large i_{c} ignores (discounts) future costs.
- Small i_{c} implies future costs are nearly as important as present costs.
- Implication of fig. 9:
ignoring future costs (large i_{c}) makes the present more attractive (large $B C R$).

[^4]

Figure 8: $B C R$, eq.(47), and $\delta_{f}\left(i_{b}\right)$ vs i_{b}, with $i_{c}=0.05$, $\delta_{f}\left(i_{c}\right)=17.16$.

Figure 9: $B C R$, eq.(47), and $\delta_{f}\left(i_{b}\right)$ vs i_{b}, with $4 i_{c}$'s.

2.8 Benefits, Dis-Benefits and Conflicting Interests

- Benefits and dis-benefits:
- Increased stiffness of a beam by adding ribs also increases the weight.

Enhancing the reliability may reduce the allowable payload.
The reliability engineer's benefits are the flight engineer's dis-benefits.

- Highways sometimes disturb habitats and damage ecologies.

The motorists' benefits are the naturalists' dis-benefits.

- Increased product life delays the opportunity for up-grade.

The planner's benefit is the innovator's dis-benefit.

- Present worth of benefits, B_{n}, and dis-benefits, D_{n}, adapting from eq.(3), p.5:

$$
\begin{equation*}
B_{p w}=\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n}\left(B_{n}-D_{n}\right) \tag{48}
\end{equation*}
$$

- BCR, from eqs.(2), (4) and (48):

$$
\begin{align*}
B C R & =\frac{B_{p w}}{C_{p w}} \tag{49}\\
& =\frac{\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n}\left(B_{n}-D_{n}\right)}{S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n}} \tag{50}
\end{align*}
$$

Special case: B_{n}, D_{n} and C_{n} are constant, so eq.(50) is:

$$
\begin{align*}
B C R & =\frac{(B-D) \sum_{n=1}^{N}\left(1+i_{b}\right)^{-n}}{S+C \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}} \tag{51}\\
& =\frac{(B-D) \frac{1-\left(1+i_{b}\right)^{-N}}{i_{b}}}{S+C \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}} \tag{52}\\
& =\frac{(B-D) \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)}, \quad \delta_{f}(i) \text { defined in eq.(26), p. } 8 \tag{53}
\end{align*}
$$

- Uncertain dis-benefits:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{D:\left|\frac{D-\widetilde{D}}{s_{D}}\right| \leq h\right\}, \quad h \geq 0 \tag{54}
\end{equation*}
$$

- Robustness for requirement $B C R(D) \geq B C R_{\mathrm{c}}$:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{D \in \mathcal{U}(h)} B C R(D)\right) \geq B C R_{c}\right\} \tag{55}
\end{equation*}
$$

- Inner minimum, $m(h)$, occurs at $D=\widetilde{D}+s_{D} h$:

$$
\begin{align*}
m(h) & =\frac{\left(B-\widetilde{D}-s_{D} h\right) \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)} \tag{56}\\
& =B C R(\widetilde{D})-\frac{s_{D} \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)} h \tag{57}
\end{align*}
$$

- Equate eq.(57) to $B C R_{\mathrm{c}}$ and solve for h to find robustness:

$$
\begin{equation*}
B C R(\widetilde{D})-\frac{s_{D} \delta_{f}\left(i_{b}\right)}{S+C \delta_{f}\left(i_{c}\right)} h=B C R_{\mathrm{c}} \quad \Longrightarrow \quad \widehat{h}\left(B C R_{\mathrm{c}}\right)=\frac{\left(B C R(\widetilde{D})-B C R_{\mathrm{c}}\right)\left(S+C \delta_{f}\left(i_{c}\right)\right)}{s_{D} \delta_{f}\left(i_{b}\right)} \tag{58}
\end{equation*}
$$

- Values of B, C, S and N from section 2.7, p.15, with $i_{c}=0.05, s_{D}=0.3 \widetilde{D}$. Fig. 10.
- Horizontal intercepts (zeroing):
- $B C R\left(\widetilde{D}=\$ 2 M, i_{b}=0.1\right)=3.06>2.43=B C R\left(\widetilde{D}=\$ 1.5 M, i_{b}=0.15\right)$:
- In this case, lower discounting ($i_{b}=0.1$) nominally outweighs larger dis-benefit ($\widetilde{D}=\$ 2 \mathrm{M}$).
- Cost of robustness (slopes):
- $\operatorname{slope}\left(\widetilde{D}=\$ 2 M, i_{b}=0.1\right)=-1.63>-3.21=\operatorname{slope}\left(\widetilde{D}=\$ 1.5 M, i_{b}=0.15\right)$.
- Lower cost of robustness with $\widetilde{D}=\$ 1.5 M$ due to lower uncertainty: $s_{D} \propto \widetilde{D}$.
- Preference reversal: trade off between dis-benefit and discounting depends on $B C R_{\mathrm{c}}$.

Figure 10: Robustness curve, eq.(58).

3 Using the BCR with
 Incommensurate Benefits and Costs

3.1 Robotic Position Accuracy

- Robotic arm with positional accuracy $d[\mathrm{~mm}]$.
- Small d better than large d : number of available tasks increases as d decreases, table 1 .
- Small d is more expensive than large d, table 1 .

$d[\mathrm{~mm}]$	\# tasks	eq.(59)	Price (\$10 $)$	eq.(60)
1	50	50.0	10	10
2	25	25.0	5	5.0
3	12	12.5	3.4	3.3
4	6	6.25	2.5	2.5

Table 1: Data for section 3.1.

- Benefit function, $B(d)$, col. 3, table 1:

$$
\begin{equation*}
B(d)=B_{0} \mathrm{e}^{-\lambda d}, \quad B_{0}=100[\# \text { of tasks }], \quad \lambda=0.693 \tag{59}
\end{equation*}
$$

- Price function, $S(d)$, col. 5, table 1:

$$
\begin{equation*}
S(d)=S_{0} / d, \quad S_{0}=\$ 10^{6} \tag{60}
\end{equation*}
$$

- $C(d)=$ maintenance cost at end of each year $=\varepsilon S(d)$. We will use $\varepsilon=0.15$.
- $N=$ life of robot $=5$ years.
- $i_{c}=$ interest rate or MARR $=0.05$.
- The task: specify positional accuracy that's worth the money.
- PW of initial cost and maintenance, eq.(2), p.5:

$$
\begin{align*}
C_{p w}(d) & =S(d)+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C(d) \tag{61}\\
& =S(d)\left(1+\varepsilon \sum_{n=1}^{N}\left(1+i_{c}\right)^{-n}\right) \tag{62}\\
& =S(d)\left(1+\varepsilon \frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}}\right) \tag{63}\\
& =S(d)\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right) \tag{64}
\end{align*}
$$

$\delta_{f}\left(i_{c}\right)=4.33$ so $1+\varepsilon \delta_{f}\left(i_{c}\right)=1.65$ so $C_{p w}(d)=1.65 S(d)$.

- The problem, fig. 11, p.20:
- Benefit improves ($B(d)$ rises) and cost rises $C_{p w}(d)$ as accuracy improves (d falls).
- The usual calculation of worth is $B-C$, but this is now dimensionally inconsistent.
- The solution: consider benefit per dollar, the $B C R$ in units [\# of tasks/\$]:

$$
\begin{align*}
B C R(d) & =\frac{B(d)}{C_{p w}(d)} \tag{65}\\
& =\frac{B(d)}{S(d)\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right)} \tag{66}\\
& =\frac{B_{0} \mathrm{e}^{-\lambda d}}{S_{0} / d} \frac{1}{1+\varepsilon \delta_{f}\left(i_{c}\right)} \tag{67}\\
& =\frac{B_{0} d \mathrm{e}^{-\lambda d}}{S_{0}} \frac{1}{1+\varepsilon \delta_{f}\left(i_{c}\right)} \tag{68}
\end{align*}
$$

- Using the BCR, fig. 12, p. 20 :
- $B C R(d)$ maximal and fairly constant for $1 \leq d \leq 2$ [mm].

Range of best economic efficiency.

- BCR(d) falls as d goes: $1 \mapsto 0$.

Range of diminishing economic efficiency.

- BCR(d) falls as d goes: $2 \mapsto 4$.

Range of diminishing economic efficiency.

Figure 11: Benefit and initial cost vs positional accuracy.

Figure 12: $B C R$ vs positional accuracy, d, eq.(68), with benefit and initial cost functions.

- Note: Economic efficiency isn't everything.

If you need spatial accuracy of, say, 0.3 mm ,
or if you need great versatility, $B(0.3)=81$ tasks,
then you need $d=0.3 \mathrm{~mm}$ despite the economic inefficiency.

3.2 Robotic Position Accuracy: Comparing 3 Designs

- Continue section 3.1, p. 19.
- Compare three different designs, table 2, eqs.(69)-(74) and figs. 13 and 14, p. 22.

$d[\mathrm{~mm}]$	$B_{1}(d)$	$S_{1}(d)\left(\$ 10^{5}\right)$	$B_{2}(d)$	$S_{2}(d)\left(\$ 10^{5}\right)$	$B_{3}(d)$	$S_{3}(d)\left(\$ 10^{5}\right)$
1	50	10	34	9	67	9
2	25	5	26	7	45	7
3	12.5	3.4	18	5	23	5
4	6.25	2.5	10	3	1	3

Table 2: Data for section 3.2.

$$
\begin{array}{ll}
\text { Design 1: } & B_{1}(d)=B_{0} \mathrm{e}^{-\lambda d}, \quad B_{0}=100[\# \text { of tasks }], \quad \lambda=0.693 \\
& S_{1}(d)=S_{0} / d, \quad S_{0}=\$ 10^{6} \\
\text { Design 2: } & B_{2}(d)=-m_{2} d+g_{2}, \quad m_{2}=-8, \quad g_{2}=42 \\
& S_{2}(d)=-a_{2} d+b_{2}, \quad a_{2}=-2, \quad b_{2}=1 \\
\text { Design 3: } & B_{3}(d)=-m_{3} d+g_{3}, \quad m_{3}=-22, \quad g_{3}=89 \\
& S_{2}(d)=-a_{3} d+b_{3}, \quad a_{3}=a_{2}=-2, \quad b_{3}=b_{2}=1 \tag{74}
\end{array}
$$

- Design 1: Same as section 3.1, p.19.
- Good accuracy at low d, fig. 13.
- High cost at low d, fig. 14.
- Design 2:
- Better accuracy than Design 1 at large d. Worse accuracy than Design 1 at small d.
- Higher cost than Design 1 at large d. Lower cost than Design 1 at small d.
- Design 3:
- Better accuracy than Design 1 at all d.
- Higher cost than Design 1 at large d. Lower cost than Design 1 at small d.
- $B C R_{j}$ for design j, from eq.(66), p.20:

$$
\begin{equation*}
B C R_{j}(d)=\frac{B_{j}(d)}{S_{j}(d)\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right)} \tag{75}
\end{equation*}
$$

- BCR, fig. 15:
- Design 3: Best economic efficiency (BCR) for $d<3.3$.
- Design 3: Worst economic efficiency $(B C R)$ for $d>3.3$.
- Design 2: Best economic efficiency (BCR) for $d>3.3$.

Figure 13: Benefit functions.

Figure 14: Initial cost functions.

Figure 15: $B C R$ vs positional accuracy, d, eq.(75), with 3 benefit and initial cost functions.

3.3 Robotic Position Accuracy with Uncertain Benefit

- Return to section 3.1, p. 19 and consider uncertain $B(d)$.
- The BCR, eq.(66), p.20, is:

$$
\begin{equation*}
B C R=\frac{B(d)}{S(d)\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right)} \tag{76}
\end{equation*}
$$

$i_{c}=0.05, N=5, \varepsilon=0.15,1+\varepsilon \delta_{f}\left(i_{c}\right)=1.65$. From eq.(60):

$$
\begin{equation*}
S(d)=S_{0} / d, \quad S_{0}=\$ 10^{6} \tag{77}
\end{equation*}
$$

and, from eq.(59), our uncertain estimate of the benefit function is:

$$
\begin{equation*}
\widetilde{B}(d)=B_{0} \mathrm{e}^{-\lambda d}, \quad B_{0}=100[\# \text { of tasks }], \quad \lambda=0.693 \tag{78}
\end{equation*}
$$

- However, we don't know how much $\widetilde{B}(d)$ errs, so we use a fractional-error info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{B(d):\left|\frac{B(d)-\widetilde{B}(d)}{\widetilde{B}(d)}\right| \leq h\right\}, \quad h \geq 0 \tag{79}
\end{equation*}
$$

- We require that the $B C R$ be no less than a critical value, $B C R_{\mathrm{c}}$:

$$
\begin{equation*}
B C R(B, d) \geq B C R_{\mathrm{c}} \tag{80}
\end{equation*}
$$

- The robustness is the greatest tolerable horizon of uncertainty:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}, d\right)=\max \left\{h:\left(\min _{B \in \mathcal{U}(h)} B C R(B, d)\right) \geq B C R_{c}\right\} \tag{81}
\end{equation*}
$$

- The inner minimum, $m(h)$, occurs when $B(d)$ is as small as possible:

$$
\begin{align*}
m(h) & =\frac{(1-h) \widetilde{B}(d)}{S(d)\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right)} \tag{82}\\
& =(1-h) B C R(\widetilde{B}, d) \tag{83}
\end{align*}
$$

- Equate $m(h)$ to $B C R_{\mathrm{c}}$ and solve for h :

$$
\begin{align*}
(1-h) B C R(\widetilde{B}, d)=B C R_{\mathrm{c}} & \Longrightarrow \tag{84}\\
\widehat{h}\left(B C R_{\mathrm{c}}, d\right) & =1-\frac{B C R_{\mathrm{c}}}{B C R(\widetilde{B}, d)} \tag{85}\\
& =1-\frac{S_{0} \mathrm{e}^{\lambda d}}{B_{0} d}\left(1+\varepsilon \delta_{f}\left(i_{c}\right)\right) B C R_{\mathrm{c}} \tag{86}
\end{align*}
$$

or zero if this is negative.

- Robustness vs critical BCR, fig. 16, for 3 different positional accuracies d :
- Zeroing: $\widehat{h}\left(B C R_{\mathrm{c}}\right)=0$ at $B C R_{\mathrm{c}}=B C R(\widetilde{B})=$ value in fig. 12, p. 20 .

This determines the order of the curves.

- Trade off: robustness vs critical BCR that can be achieved.

$$
\widehat{h}\left(B C R_{\mathrm{c}}=16 \text { tasks } / \$ 10^{6}, d=1.3\right)=0.5
$$

- Robustness vs positional accuracy, fig. 17, for 3 critical BCRs.
$\circ d=1.4$ [mm] is most robust positional accuracy.
- 30 tasks $/ \$ 10^{6}$: very low robustness; probably infeasible.
- 10 or 20 tasks $/ \$ 10^{6}$: low/modest robustness at $d=1.4$ [mm]; may be feasible.

Figure 16: Robustness vs critical \# of tasks, eq.(86), for 3 positional accuracies d.

Figure 17: Robustness vs positional accuracy, eq.(86), for $3 B C R_{\mathrm{c}}$'s.

3.4 Discounting Future Non-Monetary Benefit: Sorties of a Drone

- Question:
- We know how to discount the future value of money: time value of money.
- How to discount the future value of non-monetary benefit?
- Consider an intelligence-gathering drone:
- $N=$ life = 5 [years].
- $B_{n}=$ benefit in year n, E.g. $=$ number of sorties in nth year $=100$.
- $C_{n}=$ maintenance cost at end of nth year $=\$ 2,000$.
- $S=$ initial cost of drone $=\$ 10,000$.
- PW of investment and maintenance, eq.(2), p.5:

$$
\begin{equation*}
C_{p w}=S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n} \tag{87}
\end{equation*}
$$

$i_{c}=$ interest rate $=0.05$.

- Discounting the future:
$\circ i_{b}=$ discount rate, expressing reduced importance of future benefit (e.g. sorties) due to:
- Alternative future intelligence-gathering methods.
- Less dangerous security environment, reducing need for drones.
- More concealed security threats, reducing utility of drones.
- We will use $i_{b}=0.15$.
- i_{b} may be quite uncertain, due to uncertain future technology or security environment.
- We will info-gap i_{b} in section 3.5, p. 28.
- PW of benefits, eq.(3), p.5:

$$
\begin{equation*}
B_{p w}=\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} B_{n} \tag{88}
\end{equation*}
$$

- Note: Single benefit, B_{n}, in each period. This is a simplification.
- However, there can be different benefits, of different importance, over time:

Tactical, strategic or political intelligence; etc.

- BCR, eqs.(4) and (5), p.5:

$$
\begin{align*}
B C R & =\frac{B_{p w}}{C_{p w}} \tag{89}\\
& =\frac{\sum_{n=1}^{N}\left(1+i_{b}\right)^{-n} B_{n}}{S+\sum_{n=1}^{N}\left(1+i_{c}\right)^{-n} C_{n}} \tag{90}
\end{align*}
$$

- If:

$$
\begin{equation*}
B=B_{n}, \quad C=C_{n} \tag{91}
\end{equation*}
$$

then:

$$
\begin{align*}
B C R & =\frac{\frac{1-\left(1+i_{b}\right)^{-N}}{i_{b}} B}{S+\frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}} C} \tag{92}\\
& =\frac{\delta_{f}\left(i_{b}\right) B}{S+\delta_{f}\left(i_{c}\right) C} \tag{93}
\end{align*}
$$

- With eq.(93), and for $i_{c}=0.05, i_{b}=0.15$, etc., we find:

$$
\begin{equation*}
\delta_{f}\left(i_{b}\right)=3.3522, \quad \delta_{f}\left(i_{c}\right)=4.3295, \quad B C R=0.0180[\text { sorties } / \$] \tag{94}
\end{equation*}
$$

- One time-discounted sortie costs $1 / B C R=1 / 0.0180=\$ 55.56 /$ sortie .
- BCR increases linearly as B (\# of sorties/year) increases, eq.(93), fig. 18, p.26.
- BCR decreases non-linearly as i_{b} (discount rate for future benefit) increases, fig. 19, p.26.
- Both B and i_{b} are uncertain.

Figure 18: $B C R$ vs \# of sorties/year, eq.(86). $i_{b}=0.15$.

Figure 19: $B C R$ vs benefit discount rate, eq.(86). $B=$ 100.

- Compare eq.(94) with shorter duration and proportionately lower initial investment:
- $N=$ life = 2 [years].
- $B_{n}=$ benefit in year n, E.g. $=$ number of sorties in nth year $=100$.
- $C_{n}=$ maintenance cost at end of nth year $=\$ 2,000$.
- $S=$ initial cost of drone $=\$ 4,000$.
- $i_{b}=0.15, i_{c}=0.05$.
- With eq.(93) we find:

$$
\begin{equation*}
\delta_{f}\left(i_{b}\right)=1.6257, \quad \delta_{f}\left(i_{c}\right)=1.8594, \quad B C R=0.0211[\text { sorties } / \$] \tag{95}
\end{equation*}
$$

- One time-discounted sortie costs $1 / B C R=1 / 0.0211=\$ 47.48 /$ sortie.
- This is lower (better) cost/sortie than eq.(94), \$55.56/sortie, because the higher cost at $N=5$ is spread over discounted (lower) benefits.
- This raises the idea of discounted fair price: An initial cost function $S(N)$ for which $B C R(N)$ is constant and equals $B C R_{\text {ref }}$, a constant given reference value.
For each N, solve this relation for $S(N)$, using also eq.(93), p.25:

$$
\begin{align*}
B C R_{\mathrm{ref}} & =B C R(N, S(N)) \tag{96}\\
& =\frac{\delta_{f}\left(i_{b}, N\right) B}{S(N)+\delta_{f}\left(i_{c}, N\right) C} \tag{97}
\end{align*}
$$

Thus, Fig. 20, p.27:

$$
\begin{equation*}
S(N)=\frac{\delta_{f}\left(i_{b}, N\right) B}{B C R_{\mathrm{ref}}}-\delta_{f}\left(i_{c}, N\right) C \tag{98}
\end{equation*}
$$

Better (larger) $B C R_{\text {ref }}$ requires better (lower) $S(N)$.
Positive solution exists for any $B C R_{\text {ref }}$ such that the RHS of eq.(98) is positive:

$$
\begin{equation*}
B C R_{\mathrm{ref}}<\frac{\delta_{f}\left(i_{b}, N\right) B}{\delta_{f}\left(i_{c}, N\right) C} \tag{99}
\end{equation*}
$$

Reducing i_{b} or increasing i_{c} enables larger $B C R_{\text {ref }}$:
Reducing i_{b} increases discounted future benefits (because $\delta_{f}\left(i_{b}, N\right)$ increases).
Increasing i_{c} decreases discounted future costs (because $\delta_{f}\left(i_{c}, N\right)$ decreases).
The discounted fair price, eq.(98), fig. 20, with $B C R_{\text {ref }}=0.02$:
Rises at low N because $\delta_{f}\left(i_{b}\right)$ and $\delta_{f}\left(i_{c}\right)$ rise at nearly the same rate.
Falls at high N because $\delta_{f}\left(i_{c}\right)$ rises faster than $\delta_{f}\left(i_{b}\right)$.

- Compare eq.(94) with no discounting of future benefits, $i_{b}=0$:
- $\delta_{f}\left(i_{b}=0\right)=N=5$.
- Thus:

$$
\begin{equation*}
B C R\left(i_{b}=0\right)=\frac{5}{3.3522} B C R\left(i_{b}=0.15\right)=1.4916 \times B C R\left(i_{b}=0.15\right)=0.0268 \tag{100}
\end{equation*}
$$

- Thus one undiscounted sortie-benefit costs $1 / B C R=1 / .0268=\$ 37.25<\$ 55.56$.
- The undiscounted sortie-benefit costs less because $C_{p w}$ is distributed over more benefit.

Figure 20: Discounted fair price and discount factors vs $N . B C R_{\text {ref }}=0.02$.

3.5 Uncertain Discounting of Future Non-Monetary Benefit: Sorties of a Drone

- Continue section 3.4, p.25, and consider uncertain i_{b} and B (both constant over time):

$$
\begin{equation*}
\mathcal{U}(h)=\left\{i_{b}, B: i_{b}>-1,\left|\frac{i_{b}-\widetilde{i}_{b}}{s_{i}}\right| \leq h,\left|\frac{B-\widetilde{B}}{s_{B}}\right| \leq h\right\}, \quad h \geq 0 \tag{101}
\end{equation*}
$$

Questions: How to interpret s_{i} and s_{B} ? How to formulation IGM if that information is lacking?

- Require:

$$
\begin{equation*}
B C R\left(i_{b}, B\right) \geq B C R_{\mathrm{c}} \tag{102}
\end{equation*}
$$

for $B C R\left(i_{b}, B\right)$ from eq.(92), p. 25 .

- Robustness:

$$
\begin{equation*}
\widehat{h}\left(B C R_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{i_{b}, B \in \mathcal{U}(h)} B C R\left(i_{b}, B\right)\right) \geq B C R_{c}\right\} \tag{103}
\end{equation*}
$$

- Inner minimum, $m(h)$, occurs at $i_{b}=\widetilde{i}_{b}+s_{i} h$ and $B=\widetilde{B}-s_{b} h$:

$$
\begin{equation*}
m(h)=\frac{\frac{1-\left(1+\widetilde{i}_{b}+s_{i} h\right)^{-N}}{i_{b}+s_{i} h}\left(\widetilde{B}-s_{B} h\right)}{S+\frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}} C} \tag{104}
\end{equation*}
$$

Question: How to understand the " + " in $i_{b}=\widetilde{i}_{b}+s_{i} h$ and the " - " in $B=\widetilde{B}-s_{b} h$?
Why do they differ?

- Robustness curve in fig. 21, p. 28 .
- Zeroing: $\widehat{h}\left(B C R_{\mathrm{c}}\right)=0$ at $B C R_{\mathrm{c}}=0.018=B C R\left(\widetilde{i_{b}}, \widetilde{B}\right)$, eq.(94), p.26.
- Trade off: robustness rises as $B C R_{\mathrm{c}}$ falls.
$-\widehat{h}\left(B C R_{\mathrm{c}}=0.01\right)=2$. Reasonable or moderate robustness (Why? When not?).
$-B C R=0.01$ implies $1 / .01=\$ 100 /$ sortie.
- Compare nominal, eq.(94), p.26: $1 / 0.018=\$ 55.56 /$ sortie.
- Is $\$ 55.56 /$ sortie a fair or realistic price?
$\$ 55.56 /$ sortie $\equiv 0.0180$ sorties $/ \$$ for which $\widehat{h}=0$. Unreliable. Due to zeroing.

Figure 21: Robustness vs $B C R_{\mathrm{c}}$, eq.(104).

3.6 Probabilistic Uncertainty of Non-Monetary Benefit: Sorties of a Drone

- Continue section 3.4 with random benefit, B in eq.(93), p.25, $B \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

Question: How might we know that this is the pdf?

- Theory: central limit theorem: sum of many iid events. (Not too plausible.)
- Past experience, and assuming the future is similar. (Sometimes plausible.)
- We focus on deep uncertainty, so pdf's typically unavailable or uncertain.
- The BCR, eqs.(92) and (93) p.25, is:

$$
\begin{align*}
B C R & =\frac{\frac{1-\left(1+i_{b}\right)^{-N}}{i_{b}} B}{S+\frac{1-\left(1+i_{c}\right)^{-N}}{i_{c}} C} \tag{105}\\
& =\underbrace{\frac{\delta_{f}\left(i_{b}\right)}{S+\delta_{f}\left(i_{c}\right) C}}_{Q} B, \quad \delta_{f}(i) \text { defined in eq.(26), p.8 } \tag{106}
\end{align*}
$$

- The probability of failure is:

$$
\begin{align*}
P_{\mathrm{f}} & =\operatorname{Prob}\left(B C R \leq B C R_{\mathrm{c}}\right)=\operatorname{Prob}\left(Q B \leq B C R_{\mathrm{c}}\right)=\operatorname{Prob}\left(B \leq \frac{B C R_{\mathrm{c}}}{Q}\right) \tag{107}\\
& =\operatorname{Prob}(\underbrace{\frac{B-\mu}{\sigma}}_{z \sim \mathcal{N}(0,1)} \leq \frac{\frac{B C R_{\mathrm{c}}}{Q}-\mu}{\sigma}) \tag{108}\\
& =\Phi\left(\frac{B C R_{\mathrm{c}}-Q \mu}{Q \sigma}\right) \tag{109}
\end{align*}
$$

- Note that, because $B \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $B C R=Q B$:

$$
\begin{equation*}
B C R \sim \mathcal{N}\left(Q \mu, Q^{2} \sigma^{2}\right) \tag{110}
\end{equation*}
$$

Thus, when evaluating the probability of failure, we are usually interested in the case:

$$
\begin{equation*}
B C R_{\mathrm{c}}<Q \mu \tag{111}
\end{equation*}
$$

Hence, assuming eq.(111):

$$
\begin{align*}
& \frac{\partial P_{\mathrm{f}}}{\partial \mu} \leq 0 \text { because } \frac{B C R_{\mathrm{c}}-Q \mu}{Q \sigma} \text { gets more negative as } \mu \text { increases } \tag{112}\\
& \frac{\partial P_{\mathrm{f}}}{\partial \sigma} \geq 0 \text { because } \frac{B C R_{\mathrm{c}}-Q \mu}{Q \sigma} \text { gets less negative as } \sigma \text { increases } \tag{113}
\end{align*}
$$

Eq.(112): Increased mean benefit, μ, causes reduced P_{f}, fig. 22, left.
Eq.(113): Increased variance of benefit, σ^{2}, causes increased P_{f}, fig. 22, right.

Figure 22: Probability distributions for various means and variances.

- Eq.(109) can be re-written:

$$
\begin{equation*}
P_{\mathrm{f}}=\Phi\left(\frac{B C R_{\mathrm{c}}}{Q \sigma}-\frac{\mu}{\sigma}\right) \tag{114}
\end{equation*}
$$

Hence:

$$
\begin{align*}
& \frac{\partial P_{\mathrm{f}}}{\partial i_{b}} \geq 0 \text { because } \delta_{f}\left(i_{b}\right) \downarrow \text { as } i_{b} \uparrow \text { so } Q \downarrow \text { so } \frac{B C R_{\mathrm{c}}}{Q \sigma}-\frac{\mu}{\sigma} \text { gets less negative } \tag{115}\\
& \frac{\partial P_{\mathrm{f}}}{\partial i_{c}} \leq 0 \text { because } \delta_{f}\left(i_{c}\right) \downarrow \text { as } i_{c} \uparrow \text { so } Q \uparrow \text { so } \frac{B C R_{\mathrm{c}}}{Q \sigma}-\frac{\mu}{\sigma} \text { gets more negative } \tag{116}
\end{align*}
$$

Eq.(115): increased discounting of benefits causes increased P_{f} by decreasing net benefit.
Eq.(116): increased discounting of cost causes decreased P_{f} by decreasing net cost.

3.7 Info-Gap Uncertain PDF of Non-Monetary Benefit: Sorties of a Drone

- Continue section 3.6, p.29, but with uncertain $p(B)$.
- Nominal estimate: $\widetilde{p}(B) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Fractional-error info-gap model for functional uncertainty:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{p(B): p(B) \geq 0, \int_{-\infty}^{\infty} p(B) \mathrm{d} B=1,\left|\frac{p(B)-\widetilde{p}(B)}{\widetilde{p}(B)}\right| \leq h\right\}, \quad h \geq 0 \tag{117}
\end{equation*}
$$

- Note: eq.(117) is a modest info-gap model because uncertainty decays strongly on the tails.
- An info-gap model with greater uncertainty is:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{p(B): p(B) \geq 0, \int_{-\infty}^{\infty} p(B) \mathrm{d} B=1,\left|\frac{p(B)-\widetilde{p}(B)}{w}\right| \leq h\right\}, \quad h \geq 0 \tag{118}
\end{equation*}
$$

$w=$ constant, e.g. $w=\max _{B} \widetilde{p}(B)$. Large uncertainty on the tails.

- Probability of failure, from eq.(107), p.29:

$$
\begin{equation*}
P_{\mathrm{f}}(p)=\int_{-\infty}^{B C R_{\mathrm{c}} / Q} p(B) \mathrm{d} B \tag{119}
\end{equation*}
$$

- Performance requirement:

$$
\begin{equation*}
P_{\mathrm{f}}(p) \leq P_{\mathrm{c}} \tag{120}
\end{equation*}
$$

- Robustness:

$$
\begin{equation*}
\widehat{h}\left(P_{\mathrm{c}}\right)=\max \left\{h:\left(\max _{p \in \mathcal{U}(h)} P_{\mathrm{f}}(p)\right) \leq P_{\mathrm{c}}\right\} \tag{121}
\end{equation*}
$$

- Simplifying assumption (to make normalization easy), fig. 23:

$$
\begin{equation*}
B C R_{\mathrm{c}} \ll Q \mu \tag{122}
\end{equation*}
$$

Figure 23: Eq.(122) implies low failure probability.

- Now the inner max in eq.(121), denoted $m(h)$, occurs at $p(B)=(1+h) \widetilde{p}(B)$ for $B \leq \frac{B C R_{\mathrm{c}}}{Q}$:

$$
\begin{equation*}
m(h)=(1+h) \int_{-\infty}^{B C R_{\mathrm{c}} / Q} \widetilde{p}(B) \mathrm{d} B=(1+h) P_{\mathrm{f}}(\widetilde{p}) \tag{123}
\end{equation*}
$$

- Equate this to P_{c} and solve for h :

$$
\begin{equation*}
(1+h) P_{\mathrm{f}}(\widetilde{p})=P_{\mathrm{c}} \quad \Longrightarrow \quad \widehat{h}\left(P_{\mathrm{c}}\right)=\frac{P_{\mathrm{c}}}{P_{\mathrm{f}}(\widetilde{p})}-1 \tag{124}
\end{equation*}
$$

- Zeroing: $\widehat{h}\left(P_{\mathrm{c}}\right)=0$ at $P_{\mathrm{c}}=P_{\mathrm{f}}(\widetilde{p})$.
- Trade off: robustness increases as P_{c} increases.
- Robustness variation: analog to variation of P_{f}.
- From eqs.(112), (113), p.29, and eq.(124):

$$
\begin{align*}
\frac{\partial \widehat{h}}{\partial \mu} & \geq 0 \tag{125}\\
\frac{\partial \widehat{h}}{\partial \sigma} & \leq 0 \tag{126}
\end{align*}
$$

Eq.(125): Increased estimated mean benefit, μ, causes increased robustness, \widehat{h}.
Eq.(126): Increased estimated variance of benefit, σ^{2}, causes decreased robustness, \widehat{h}.

- From eqs.(115), (116), p.30, and eq.(124):

$$
\begin{align*}
\frac{\partial \widehat{h}}{\partial i_{b}} & \leq 0 \tag{127}\\
\frac{\partial \widehat{h}}{\partial i_{c}} & \geq 0 \tag{128}
\end{align*}
$$

Eq.(125): Increased discounting of benefits, i_{b}, causes decreased robustness, \widehat{h}. Eq.(126): Increased discounting of costs, i_{c}, causes increased robustness, \widehat{h}.

- Compare eqs.(112) and (113) with eqs.(125) and (126):

$$
\begin{equation*}
\frac{\partial P_{\mathrm{f}}}{\partial \mu} \leq 0, \frac{\partial P_{\mathrm{f}}}{\partial \sigma} \geq 0, \quad \frac{\partial \widehat{h}}{\partial \mu} \geq 0, \frac{\partial \widehat{h}}{\partial \sigma} \leq 0 \tag{129}
\end{equation*}
$$

- P_{f} and \widehat{h} respond in the same ways to change in μ or σ.
- Suggests that robustness could be a proxy for probability. ${ }^{6}$
- Compare eqs.(115) and (116) with eqs.(127) and (128):

$$
\begin{equation*}
\frac{\partial P_{\mathrm{f}}}{\partial i_{b}} \geq 0, \frac{\partial P_{\mathrm{f}}}{\partial i_{c}} \leq 0, \quad \frac{\partial \widehat{h}}{\partial i_{b}} \leq 0, \frac{\partial \widehat{h}}{\partial i_{c}} \geq 0 \tag{130}
\end{equation*}
$$

- P_{f} and \widehat{h} respond in the same ways to change in i_{b} or i_{c}.
- Suggests that robustness could be a proxy for probability.

[^5]
[^0]: ${ }^{0} \backslash$ lectures \backslash Intro-Econ-DM \backslash benefit-cost02.tex 9.5 .2022 (C) Yakov Ben-Haim 2022.

[^1]: ${ }^{1}$ Benefit: toelet. Cost: alut.
 ${ }^{2}$ See lecture notes on Money-Time Relationships and Their Applications, money-time02.tex.

[^2]: ${ }^{3}$ Adapted from DeGarmo, et al., table 6-1, p. 240.

[^3]: ${ }^{4}$ See lecture notes on Money-Time Relationships and Their Applications, money-time02.tex, for discussion of present worth.

[^4]: ${ }^{5}$ DeGarmo et al., p. 246.

[^5]: ${ }^{6}$ Yakov Ben-Haim, 2011, When is non-probabilistic robustness a good probabilistic bet? Working paper.
 Yakov Ben-Haim, 2014, Robust satisficing and the probability of survival, Intl. J. of System Science, 45: 3-19.
 Links to pre-prints of both articles here: https://info-gap.technion.ac.il/engineering-analysis-and-design/

