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1 Probabilistic Mean-Variance Analysis

§ Random asset returns:
• ui is the future return on $1 investment in asset i.
• ui is a random variable.
• u ∈ <N is a vector of random returns on N different assets.
• q is a vector of investments: $qi invested in asset i.
◦ qi > 0 means purchase of asset i.
◦ qi < 0 means sale of asset i.

• The future return on this investment is:

r(q, u) =
N∑
i=1

uiqi = qTu (1)

§ Budget constraint:

B =
N∑
i=1

qi = qT1 (2)

where B is the fixed budget and 1 is an N -vector whose elements are all ones.

§ Mean and variance of return:
•We assume that we know the mean, u, and covariance matrix , C, of u (what’s that?)2.
• Thus we can calculate the mean, r, and variance, σ2r , of r:

r = E(qTu) = qTu Why? (3)

σ2r = E
[
(r − r)2

]
(4)

= E

[(
qTu− qTu

)2]
(5)

= E

[(
qT (u− u)

)2]
(6)

= qT E
[
(u− u)(u− u)T

]
︸ ︷︷ ︸

C

q (7)

= qTCq (8)

§ Risk-adjusted mean return:
•We must choose q subject to the budget constraint, eq.(2).
•We would like large average return: large qTu.
•We would like small variation on this average return: small σr.
• One approach is to choose q to maximize:

F =
(
qTu

)2
− λσ2r (9)

= qTuuT q − λqTCq (10)

where λ > 0, chosen to weight the “risk” term against the “return” term.
• Another approach: explore trade off between mean, qTuuT q, and variance, qTCq.

2The covariance matrix is defined as C = E[(u− u)(u− u)T ] where u and u are column vectors.
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§ Optimal allocation:
•Write eq.(10) as:

F = qT
(
uuT − λC

)
q (11)

= qTZq (12)

which defines the N ×N real symmetric matrix Z, whose eigenvalues and eigenvectors are:

Zζi = γiζi, i = 1, . . . , N, γ1 ≤ · · · ≤ γN , ζTi ζj = δij (13)

δij is the Kronecker delta function.
• The ortho-normal eigenvectors span <N so q can be expanded as:

q =
N∑
i=1

αiζi (14)

• Thus eq.(12) becomes:

F =

(
N∑
i=1

αiζ
T
i

)
Z

 N∑
j=1

αjζj

 (15)

=

(
N∑
i=1

αiζ
T
i

) N∑
j=1

αjγjζj

 (16)

=
N∑
i=1

α2
i γi (17)

• γN is greatest eigenvalue, so F is maximized, subject to the budget constraint in eq.(2), if:

α1 = · · · = αN−1 = 0, αN =
B

ζTN1
(18)

That is, from eqs.(14) and (18), the optimizing budget-constrained allocation is:

q? =
B

ζTN1
ζN (19)

• From eq.(11) we see that q? usually mixes all N assets.

§What have we assumed:
• Knowledge of past mean and covariance, u and C.
• Knowledge that future moments will be (at least nearly) the same as past moments.
•When are these reasonable assumptions? When not?

(E.g. innovative start-ups vs conventional enterprises.)
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2 Info-Gap Extension of Mean-Variance Analysis

§ Source material: Info-Gap Decision Theory, section 3.2.7.3

§ In section 1 we assumed:
• u, the returns vector, is a random variable.
• Mean and covariance of u are known.

§We now consider weaker information:
• Nominal or typical ũ is known, perhaps calculated as historical mean or expert’s best guess.
• Shape of clusters of u-vectors is roughly known or “guesstimated”.

E.g., we may have the historical covariance of u-vectors, or expert’s judgment.
•We will adopt an ellipsoid-bound info-gap model of uncertainty:

U(h, ũ) =
{
u = ũ+ v : vTWv ≤ h2

}
, h ≥ 0 (20)

W is a known, real, symmetric, positive definite matrix. E.g. inverse of covariance matrix.
• Explain intuitively why W (ellipsoidal shape matrix) could be the inverse covariance matrix:

Shape of the uncertain cluster expresses variance and covariance.

§ System model: returns from investment:

r(q, u) = qTu (21)

§ Performance requirement:
• Adequately large return (satisficing, not optimizing):

r(q, u) ≥ rc (22)

§ Maximize robustness against uncertain returns.

2.1 Robustness Function

§ Robustness depends on 3 components:
system model, eq.(21), performance requirement, eq.(22), and uncertainty model, eq.(20).

§ ĥ(q, rc) = greatest uncertainty at which reward is no less than rc for investment portfolio q:

ĥ(q, rc) = max

{
h :

(
min

u∈U(h,ũ)
r(q, u)

)
≥ rc

}
(23)

To evaluate ĥ(q, rc) we must determine the inner minimum in eq.(23):

min
u∈U(h,ũ)

r(q, u) = qT ũ+ min
vTWv≤h2

qT v (24)

§ To evaluate this optimum we use Lagrange optimization. Define:

H = qT v + λ
(
h2 − vTWv

)
(25)

3See also section 12 of Lecture Notes on Robustness and Opportuneness, \lectures\risk\lectures\ro02.tex.
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where λ will be chosen to satisfy the constraint:

vTWv = h2 (26)

Question: Why must eq.(26) hold?

The condition for an extremum of H where H = qT v + λ
(
h2 − vTWv

)
:

0 =
∂H

∂v
= q − 2λWv (27)

=⇒ v =
1

2λ
W−1q (28)

Using the constraint from eq.(26):

h2 = vTWv =
1

4λ2
qTW−1WW−1q (29)

which leads to:
1

2λ
=

±h√
qTW−1q

(30)

Hence:
v =

±h√
qTW−1q

W−1q (31)

So the minimum is:
min

vTWv≤h2
qT v = −h

√
qTW−1q (32)

Consequently:

min
u∈U(h,ũ)

r(q, u) = qT ũ− h
√
qTW−1q (33)

§ To find ĥ: Equate this minimum to rc and solve for h:

ĥ(q, rc) =
qT ũ− rc√
qTW−1q

(34)

unless this is negative, in which case:
ĥ(q, rc) = 0 (35)

Why?

§ Two properties of robustness function in eq.(34):
• Zeroing: No robustness at nominal return, qT ũ.
• Trade-off between robustness, ĥ(q, rc), and satisficed return, rc.

2.2 Robust Optimal Investment

§ Question: how to choose the investment vector q?
Strategy:
• ĥ(q, rc) depends on the decision vector q.
• For ĥ we know that: “bigger is better”.
• So, choose q to maximize ĥ(q, rc) subject to budget constraint:
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N∑
i=1

qi = qT1 = B = total available budget (36)

1 is an N -vector whose elements each equal one.
qi > 0 =⇒ buy commodity i.
qi < 0 =⇒ sell commodity i.
•We optimize robustness to uncertainty and satisfice financial return: robust satisficing.
•We can try to optimize the return. How? Choose large rc. What is resulting robustness?

§ Consider a special (simple) case:

ũi = uo for all i (37)

That is: all commodities have the same nominal value.
Of course, the uncertainties may differ between commodities.
Eq.(37) can be expressed:

ũ = uo1 (38)

§ The robustness, eq.(34), becomes:

ĥ(q, rc) =
uoq

T1− rc√
qTW−1q

(39)

=
uoB − rc√
qTW−1q

(40)

§ So, how to choose the investment vector q?
From eq.(40) we maximize ĥ
by choosing q to minimize qTW−1q
subject to the constraint qT1 = B.

§We again use Lagrange optimization. Define:

H = qTW−1q + λ
(
B − qT1

)
(41)

Extrema are obtained from:

0 =
∂H

∂q
= 2W−1q − λ1 =⇒ q =

λ

2
W1 (42)

Choose λ to satisfy the constraint (Why must this constraint hold?):

B − qT1 = 0 (43)

Combining eqs.(42) and (43):

B =
λ

2
1TW1 =⇒ λ

2
=

B

1TW1
(44)

Combining eqs.(42) and (44), the robust optimal q is found to be:

q̂c =
B

1TW1
W1 (45)

Note: q̂c depends on the budget, B, and on the uncertainty via W .
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Robustness

ĥ(q̂c, rc)

Critical Reward, rc

large B

small B

Figure 1: Robustness function vs critical reward, eq.(46), p.7.

Substitute eq.(45) into eq.(40) and the optimal robustness becomes:

ĥ(q̂c, rc) =
(uoB − rc)

√
1TW1

B
(46)

This shows the usual trade-off between robustness vs. critical reward, as in fig.1:
Slope ∝ − 1

B , where B = total investment.
Question: Are things better or worse with large investment B?
Answers:

◦ Greater robustness at fixed aspiration rc, for larger B. (Big B is good.)
◦ Greater cost of robustness at larger B:

larger reduction in requirement, rc, to achieve a given increase in robustness.
(Big B is not so good.)

• Note ĥ ∝
√

1TW1. Question: Does this make sense?
(W is inverse covariance matrix or something like that.)

2.3 Comparing Portfolios

§ Consider 2 sets of investment options, each with:
• Constant nominal return, ũi = uo,i1, i = 1, 2.
• Ellipsoid-bound info-gap models of uncertainty as in eq.(20), p.4:

U i(h, ũi) =
{
u = ũi + v : vTWiv ≤ h2

}
, h ≥ 0, i = 1, 2 (47)

Consider the following special case:

uo,1 < uo,2 (48)

1TW11 > 1TW21 (49)

• Eq.(48) implies that option 1 is nominally worse than option 2.
• Eq.(49) implies that option 1 is nominally less uncertain than option 2.

(Recall: W is inverse covariance matrix or something similar).

The optimum robustness function for investment option i is, from eq.(46), p.7:

ĥi(q̂ci, rc) =
(uo,iB − rc)1TWi1

B
(50)

§ These two optimal robustness functions appear schematically in fig. 2, p.8:
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Robustness

ĥ(q̂c, rc)

Critical Reward, rc

rc,1 rc,2

Q
Q
Q

Q
Q

Q
Q
QQ

B
B
B
B
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B
B
B
B

Portfolio 1

Portfolio 2

Figure 2: Robustness functions for two different portfolio investment alternatives, eq.(50), p.7.

Clearly:
•We prefer portfolio 1 for rewards rc < rc,1.

Portfolio 2 is more risky than portfolio 1 in this range.
•We prefer portfolio 2 for rewards rc,1 < rc < rc,2.

Portfolio 1 is more risky than portfolio 2 in this range.
• Neither portfolio is acceptable for rewards rc,2 < rc.

Both portfolios very risky.
• Neither portfolio is robust dominant.
• Crossing robustness curves entails potential for reversal of preference.

Further questions that we did not address:
• Is the available robustness adequate?
• How much robustness is needed?

2.4 Opportuneness Function

§ Two sides of the “uncertainty coin”:
• Uncertainty can be pernicious: Robustness function protects against this.
• Uncertainty can be propitious: Opportuneness function exploits this.

§We now develop the opportuneness function, β̂(q, rw).
β̂(q, rw) = least uncertainty needed to enable (not guarantee) wonderfully large reward rw:

β̂(q, rw) = min

{
h :

(
max

u∈U(h,ũ)
r(q, u)

)
≥ rw

}
(51)

where:
rw � rc (52)

Compare this to the robustness function, eq.(23) on p.4:
ĥ(q, rc) = maximum uncertainty tolerable to guarantee adequately large (critical) reward rc:

ĥ(q, rc) = max

{
h :

(
min

u∈U(h,ũ)
r(q, u)

)
≥ rc

}
(53)

§ β̂(q, rw) and ĥ(q, rc) are dual functions, responding to dual nature of uncertainty.
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§ Distinct decision strategies:
β̂(q, rw): windfalling at rw. Aspiring to a wildly wonderful windfall.
ĥ(q, rc): satisficing at rc. Requiring an essential critical return.

§ Proceeding as before with Lagrange optimization we find:

max
u∈U(h,ũ)

qTu = qT ũ+ h
√
qTW−1q (54)

Equate this to rw and solve for h to find the opportuneness function:

β̂(q, rw) =
rw − qT ũ√
qTW−1q

(55)

Note trade-off of certainty vs. windfall reward. Compare with robustness in eq.(34), p.5:

ĥ(q, rc) =
qT ũ− rc√
qTW−1q

(56)

• β̂ and ĥ both have trade offs in opposite directions: what do they mean?
• β̂ and ĥ both have zeroing at same value, but with different meanings.

§ Impose the same budget constraint:
qT1 = B (57)

Also, assume as before:
ũ = uo1 (58)

The opportuneness function becomes:

β̂(q, rw) =
rw − uoB√
qTW−1q

(59)

Recall the robustness function, eq.(46) on p. 7:

ĥ(q, rc) =
uoB − rc√
qTW−1q

(60)

§ Recall “Bigger is better” for ĥ
=⇒ choose q to maximize ĥ.

“Big is bad” for β̂
=⇒ choose q to minimize β̂.

§ Can we optimize ĥ and β̂ with the same q?
• max ĥ requires minimum qTW−1q.
• min β̂ requires maximum qTW−1q.

So we cannot simultaneously optimize ĥ and β̂:
Any change in q which increases ĥ also increases β̂.
Any change in q which decreases ĥ also decreases β̂.
Thus ĥ and β̂ are antagonistic. Each one trades off against the other.
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§ Trade-off between robustness and opportuneness. From eqs.(59) and (60):

dĥ(q, rc)

dq
= −uoB − rc

qTW−1q

d
√
qTW−1q

dq︸ ︷︷ ︸
v

= −uoB − rc
qTW−1q

v (61)

dβ̂(q, rw)

dq
= −rw − uoB

qTW−1q

d
√
qTW−1q

dq︸ ︷︷ ︸
v

= −rw − uoB
qTW−1q

v (62)

Hence:
dĥ

dβ̂
=
uoB − rc
rw − uoB

> 0 (63)

• Eq.(63) is positive. Question: Good news or bad news?
• The trade-off between robustness and opportuneness is shown schematically in fig. 3.

-

6
High ĥ-price for β̂

Low ĥ-price for β̂?�

10

7

?� 2.5
7

Opportuneness, β̂(q, rw)

Low
(high uncertainty)

High
(low uncertainty)

Robustness, ĥ(q, rc)

high

low

Figure 3: Trade-off between robustness and opportuneness.

§ Does β̂ have an optimum?
Can we maximize qTW−1q subject to qT1 = B?
No. See fig. 4.
For any constant = qTW−1q
There is a q that also satisfies the constraint.

However, as q moves far from the origin,
other constraints may become active.

-

6

@
@
@

@
@

@

qT 1 = B

qTW−1q = constantmin qTW−1q
HHHj

Figure 4: Schematic illustration of constrained optimization of qTW−1q.
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3 Value at Risk in Financial Economics with Info-Gaps

§ Three problems:
• Joint probabilities: Uncertain common-mode defaults or economy-wide challenges.

Consider two firms in different sectors (e.g. IT and manufacturing):
They are connected by operating in the same economy.
They both require workers and thus both may face deficiency if employment is high.
They both require capital and thus both face high interest if inflation is high.

• Fat tails of true (but uncertain) distribution of returns:
◦ Extreme outcomes more frequent than anticipated. Question: Good or bad news?
◦ High percentiles under-estimated by putative distribution.

• Past vs future: Statistics vary in time. The future may be hard to predict.

§ Two foci of uncertainty:
• Statistical fluctuations:
◦ Randomness, “noise”.
◦ Estimation uncertainty.

• Knightian uncertainty:
◦ Surprises, e.g. innovations.
◦ Structural changes to the economy, e.g. social change, environmental regulation, etc.
◦ Historical data used to predict future.

§ Outline:
• Structured securities: Junior and senior tranches. Section 3.1.
• Origin of fat tails: Parameter uncertainty. Section 3.2.
• Value at risk (section 3.3):
◦ Fat tails.
◦ Thin tails.

3.1 Structured Securities

§ Source: Ben-Haim, Info-Gap Economics: An Operational Introduction, section 4.1.

§ Two securities:
• Jane takes a mortgage (or sells shares in a start-up) in Montana.
• John takes a mortgage (or sells shares in a start-up) in Mississippi.

§ Tranche: An issue of bonds derived from a pooling of similar obligations
(such as securitized mortgage debt of Jane and John).

§ Two types of tranches:
• Junior tranche: pays off if neither security fails. Both securities essential.
• Senior tranche: pays off if at most one security fails. Either security sufficient.
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§ Default of a security (the security fails): The security does not pay.
E.g. John doesn’t pay his mortgage or his start-up fails.

§ Probabilities of default:
• Fi = marginal default probability of security i, i = 1, 2.
• F12 = probability of joint default.

Figure 5: Venn diagram of marginal default probabilities, F1 and F2, and joint default probability F12.

§ Probabilities of tranche default:
• Junior tranche default probability, see fig. 5, p.12. (Why “−F12”):

FJ = F1 + F2 − F12 (64)

• Senior tranche default probability:
FS = F12 (65)

§ Example.
• Estimates: F̃i = 0.01. F̃12 = 0.0001

• Junior tranche default probability: FJ = 0.0199. Not too good.
• Senior tranche default probability: FS = 0.0001. Not too bad.

§ Problem:
Estimates of Fi and F12 uncertain, especially concerning innovative ventures.∣∣∣Fi − F̃i∣∣∣ ≤ h, i = 1, 2 (66)∣∣∣F12 − F̃12

∣∣∣ ≤ h (67)

Horizon of uncertainty, h, is unknown. No known worst case.

§ Info-gap model (additional constraints assure mathematically legitimate probabilities):4

U(h) =
{
F1, F2, F12 : F1 ≥ 0, F2 ≥ 0, F12 ≥ 0.

F12 ≤ min[F1, F2].

F1 + F2 − F12 ≤ 1.∣∣∣Fi − F̃i∣∣∣ ≤ h, i = 1, 2.∣∣∣F12 − F̃12

∣∣∣ ≤ h } , h ≥ 0 (68)

• Contraction: U(0) = {F̃1, F̃2, F̃12}.
• Nesting: h < h′ =⇒ U(h) ⊆ U(h′).

4Derivation in appendix 4.5 in Info-Gap Economics, pp.132–133.
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• Family of nested sets.
• No known worst case.
• Non-probabilistic uncertainty about probabilities of default.

§ Performance requirements: Acceptable default probabilities:
• Junior:

FJ ≤ FcJ (69)

• Senior:
FS ≤ FcS (70)

§ Question: Where do FcJ and FcS come from?
• Regulator requirements.
• Investor requirements or judgments.
• Competition between products and sectors.

§ Robustness functions: definitions.
• Maximum tolerable uncertainty.
• Max horizon of uncertainty at which default probability is acceptable.
• Junior and senior robustness functions:

ĥj(FcJ) = max

{
h :

(
max

Fi,F12∈U(h)
FJ

)
≤ FcJ

}
(71)

ĥs(FcS) = max

{
h :

(
max

Fi,F12∈U(h)
FS

)
≤ FcS

}
(72)

§ Assume estimated marginal default probabilities are equal:

F̃1 = F̃2 = F̃ (73)

§ Robustness functions: expressions, figs. 6, 7, p.14:5

• Junior tranche:

ĥj(FcJ) =


0, if FcJ < 2F̃ − F̃12

FcJ − (2F̃ − F̃12)
3 , if 2F̃ − F̃12 ≤ FcJ ≤ 2(F̃ + F̃12)

FcJ
2 − F̃ , else

(74)

• Senior tranche:
ĥs(FcS) = FcS − F̃12 (75)

or zero if this is negative.
• Trade off: Robustness goes up (good) as critical default probability goes up (bad).
• Zeroing: No robustness of estimated default probability.

5Derivations in Info-Gap Economics, p.92.
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Figure 6: Junior robustness.
F̃i = 0.01, F̃12 = 0.0001.

Figure 7: Senior robustness.
F̃i = 0.01, F̃12 = 0.0001.

§ Numerical Results (figs. 6, 7):
• Trade off: Robustness vs. critical probability.
• Zeroing: No robustness of estimated default probability.
•What does ĥ = 0.02 mean? Is this low robustness? See info-gap model in eq.(68), p.12:

U(h) =
{
F1, F2, F12 : F1 ≥ 0, F2 ≥ 0, F12 ≥ 0.

F12 ≤ min[F1, F2].

F1 + F2 − F12 ≤ 1.∣∣∣Fi − F̃i∣∣∣ ≤ h, i = 1, 2.∣∣∣F12 − F̃12

∣∣∣ ≤ h } , h ≥ 0 (76)

Recall: F̃i = 0.01, F̃12 = 0.0001.
Thus ĥ = 0.02 is moderate for junior tranche, and large for senior tranche.

• High cost of rbs: small slope.
◦ Junior: ∆ĥ/∆Fcj = 0.5. Why is this “high” cost of robustness?
◦ Senior: ∆ĥ/∆Fcs = 1. Question: Is this also high cost of robustness?

§ Implication:
Ignoring uncertainties in default probabilities causes unrealistic estimation of credit risk.
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3.2 Parameter Uncertainty and FAT Tails

§ Exponential tails (thin tails) of pdf’s are common (normal, exponential, Gamma) but not universal.

§ Basic idea of fat tails:
• Fat tails of uncertain true distribution:
◦ Tail decays slower than exponential.
◦ Not all moments exist: you don’t know the mean and/or variance. Why does that matter?

• Estimated thin-tail pdf may have uncertain parameters.
• Total pdf may be fat tailed even if marginal pdf’s are thin-tailed.

§We now develop an example of a fat-tailed distribution.

§ Exponential distribution of t.
• t is a random variable:

f(t|λ) = λe−λt, t ≥ 0 (77)

• All moments of t|λ exist.
• f(t|λ) is not fat-tailed.
• Common distribution for random time between events.

§ Gamma distribution of λ: mixture of populations.
• λ is a random variable.

π(λ) =
α

Γ(k)
(αλ)k−1e−αλ, λ ≥ 0, α > 0, k > 0︸ ︷︷ ︸

parameters

(78)

• All moments of λ exist.
• π(λ) is not fat-tailed.
•Widely used for skewed positive-valued variables, e.g. disease rates, insurance claims, rainfall.

§What is marginal distribution of t?
• t|λ is exponential (thin).
• λ is Gamma (thin).
• t is Pareto (fat). (We won’t prove this.)

§We will now discuss the Pareto distribution.
• Define a dimensionless random variable where T is from eq.(77), α is from eq.(78):

Y = 1 +
T

α
(79)

• Y has a Pareto distribution:

f(y) = k

(
1

y

)k+1

, y ≥ 1 (80)

Note the non-exponential fat tail.
• Mean and variance:

E(y) =
k

k − 1
if k > 1 (81)

var(y) =
k

k − 2
−
(

k

k − 1

)2

if k > 2 (82)
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• Not all moments exist (fat tails) if k = 1 or 2.
• Parameter uncertainty may imply fat tails (Why?) even if estimated moments are bounded.

§ In summary:
Exponential distribution (thin tail) combined with Gamma distribution (thin tail)
produced Pareto distribution that may be fat tailed.

3.3 Value at Risk

§ Source: Ben-Haim, Info-Gap Economics: An Operational Introduction, section 4.2.

§ Question: why are tails (especially fat tails) of distribution of returns important?

3.3.1 Formulation: Quantile Risk

§ Outcome, return, r:
• Scalar random variable.
• Large is better than small.
• Too small is unacceptable.

−0.05 0.05 0.15
0

2

4

6

8

10

12

14

r

p(
r)

α

q(α, p)

Figure 8: α quantile, q(α, p).

§ Two questions:
•What is the probability, α, of losing more the $q?
•What is the quantity, $q, for which α is the probability of losing more?
The quantile function provides answers.

§ α Quantile, q(α, p): The value of r whose probability of non-exceedence is α:

α =

∫ q(α,p)

−∞
p(r) dr (83)

• α is probability of failure; usually small.
• q(α, p) is usually negative.
• q(α, p) is value at risk: probability of α to lose more than |q(α, p)|.

§ At fixed α (e.g α = 0.02):
• small quantile (far left, very negative)⇐⇒ high risk.
• Prefer slightly negative quantile over very negative quantile. Why?
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E.g.: Prefer 2% probability of losing $1,000 over 2% probability of losing $10,000.

§ Performance requirement (reserve requirement) is rc:

q(α, p) ≥ rc (84)

This is called a reserve requirement because you must (or should) keep $rc in reserve.

§ Problem:
• pdf of r highly uncertain, especially on the tails.
• May have fat tails.
• Hence q(α, p) highly uncertain.

3.3.2 Example: Fat Tails

§ Info-gap model of uncertainty:
• p̃(r) is estimated pdf; e.g. normal. No fat tails.
• Envelope-bound uncertainty:

|p(r)− p̃(r)| ≤ g(r)h (85)

• Some p(r) distributions may have fat tails. Hence the uncertainty very important.

§ How to choose envelope?
• Economic judgment. E.g. one might expect Pareto distribution as discussed earlier.
• Analogical reasoning: Similarity to historical cases.
• Assess “equivalent risk”: Comparing thin and fat tailed distributions.

§ Example: g(r) is “1/r2” on tails: Fat tails.

g(r) =



(µ− rs)2 p̃(µ− rs)
r2

if r < µ− rs

p̃(r) if |r − µ| ≤ rs

(µ+ rs)
2 p̃(µ+ rs)
r2

if r > µ+ rs

(86)

§ A pdf with 1/r2 tails:
• Normalized.
• Finite mean.
• Unbounded variance.

§ Info-gap model:

U(h) =

{
p(r) : p(r) ≥ 0,

∫ ∞
−∞

p(r) dr = 1, |p(r)− p̃(r)| ≤ g(r)h

}
, h ≥ 0 (87)

§ Robustness:
Max horizon of uncertainty at which loss is acceptable (satisfies reserve requirement):

ĥ(α, rc) = max

{
h :

(
min
p∈U(h)

q(α, p)

)
≥ rc

}
(88)
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§ Robustness depends on:
• Underlying securities.
• Designated failure probability, α.
• Critical loss (reserve requirement), rc.

§ Robustness is a decision function:
• Satisfy requirement: Quantile is large enough.
• Maximize robustness.
• Don’t try to minimize risk, α, or to maximize the quantile, q(α, p).

§ Example: Uncertain fat tails.
• p̃(r) normal with mean µ and variance σ2.
• Info-gap model of eq.(87) with rs = 2σ. Why 2σ?6

• 1% risk so α = 0.01 unless otherwise stated.
• 3 Portfolios: lo, med, hi expected return.

6We are fairly confident in p̃(r), based on evidence, within 2σ of the estimated mean.
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Figure 9: Robustness, ĥ, vs. critical loss, rc, for 3 values of µ. σ = 0.03. Uncertain fat tails.

§ Results in fig. 9:
• Zeroing: No robustness of estimated critical loss.
• Trade off: robustness improves (goes up) as critical loss gets worse (goes down).
• Effects of increasing the mean return:
◦ Shift to higher robustness (good).
◦ Increase slope: reduce cost of robustness (good).

§ Calibrating the robustness in fig. 9:
• Is robustness of 3 or 5 “large”?
• ĥ = 3 means 3 × the fat tail is tolerable.
• Standard normal at −2σ: 0.0228.
• Fat tail at −2σ: 0.1080. Depends on g(r) from eq.(86), p.17.
• Robustness of 3 × the fat tail seems substantial.
• This is a judgment based on contextual understanding, experience, and risk preference.



portfolio-mgt001.tex PORTFOLIO MANAGEMENT 20

−1 −0.8 −0.6 −0.4 −0.2 0
0

1

2

3

4

5

Critical loss

R
ob

us
tn

es
s

−0.04 −0.02
0

0.5

1

µ = 0.03 0.04 0.05

−0.6 −0.4 −0.2 0
0

1

2

3

4

5

Critical loss

R
ob

us
tn

es
s

−0.04 −0.02
0

0.5

1

σ = 0.035 0.030 0.025

Figure 10: Robustness, ĥ, vs.
critical loss, rc, for 3 values of µ.
σ = 0.03. Same as fig. 9. Uncer-
tain fat tails.

Figure 11: Robustness, ĥ, vs.
critical loss, rc, for 3 values of σ.
µ = 0.04. Uncertain fat tails.

§ Mean-variance trade-off: comparing figs. 10 and 11.
• Fig. 10: robustness curves for various µ at fixed σ.
• Fig. 11: robustness curves for various σ at fixed µ.
• Figs. 10 and 11 quite similar.
• Increasing mean by 0.01 roughly equivalent to decreasing standard deviation by 0.005.
• Recall previous discussion of balancing mean and variance, eq.(9), p.2, by maximizing:

F =
(
qTu

)2
− λσ2r (89)

This required knowledge of moments and of the tails.
• Current approach manages uncertainty in the pdf.
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Figure 12: Robustness, ĥ, vs.
critical loss, rc, for two different
combinations of µ and σ. Uncer-
tain fat tails.

Figure 13: Robustness, ĥ, vs.
critical loss, rc, for three different
probabilities of failure, α. µ =
0.04 and σ = 0.03. Uncertain fat
tails.

§ Preference reversal: comparing two portfolios in fig. 12.
• (µ, σ) = (0.04, 0.025) �est. (0.05, 0.03). Putative, zero-robustness comparison.

Question: Is �est. a good basis for decision?
• (µ, σ) = (0.05, 0.03) �rbs. (0.04, 0.025) at ĥ > 1.

Question: Is the robust advantage of (µ, σ) = (0.05, 0.03) significant at critical loss −0.06?
§ Effect of greater probability of failure (greater acceptable risk), α, fig. 13:
• Greater robustness (curves shift right) as α increases.
• Lower cost of robustness (steeper curves) as α increases.
• Trade offs: µ, σ and α.
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3.3.3 Example: Thin Tails

§ Less severe uncertainty:
• Thin tails: Less uncertainty about extreme events.
• Known pdf family: Normal distributions.
• Uncertain moments of normal pdf:

U(h) =

{
p(r) ∼ N(µ, σ2) :

∣∣∣∣∣µ− µ̃εµ

∣∣∣∣∣ ≤ h,
∣∣∣∣σ − σ̃εσ

∣∣∣∣ ≤ h, σ ≥ 0

}
, h ≥ 0 (90)

Note non-probabilistic uncertainty about moments of a probability distribution.
• Robustness as in eq.(88), p.17:

Max horizon of uncertainty at which loss is acceptable (satisfies reserve requirement):

ĥ(α, rc) = max

{
h :

(
min
p∈U(h)

q(α, p)

)
≥ rc

}
(91)

§ Results, fig. 14:
• Trade off: Robustness vs. critical loss.
• Zeroing: No rbs. of est. critical loss.
• Robustness: Greater than for fat tails (but not enormously greater).
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Figure 14: Robustness, ĥ, vs. critical loss, rc, for three different probabilities of failure, α. µ̃ = 0.04,
σ̃ = 0.03, εµ = 0.004, εσ = 0.003. Uncertain moments.

§ Preference reversal, fig. 15:
• (µ, σ) = (0.04, 0.03) �est. (0.02, 0.025). Low-robustness.
• (µ, σ) = (0.02, 0.025) �rbs. (0.04, 0.03). ĥ > 2.
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Figure 15: Robustness, ĥ, vs. critical loss, rc, for two different combinations of µ and σ. α = 0.01.
Uncertain moments.


