15 Strategic Asset Allocation

§ This section based on section 4.4 of Yakov Ben-Haim, 2010, *Info-Gap Economics: An Operational Introduction*, Palgrave.

\S Generic idea of an asset:

- Energy supply to different actuators: motion on complex terrain; robotics.
- Duration and force at load points for deflection, especially in non-linear system.
- Duration at search locations (looking for treasure or enemies).
- People developing innovative ideas or projects.
- Stocks or bonds in finance: monetary return.

\S Generic idea of strategic allocation:

- Dynamic setting: multiple time steps.
- Allocation at each time step.
- Budget limitation.
- "Returns" or "outcomes" at each step determine resources for next step.

\S Basic idea of asset allocation ("financial" model):

- Choose an allocation of resources (e.g. budget) between different assets.
- The future returns are random and the pdf is uncertain.
- You require high probability that the future balance is acceptable. That is, the future **capital reserve** (or profit) must be adequate with high probability.

15.1 Budget Constraint

Basic variables:

 x_{it} is the **quantity of the** *i***th asset which is purchased** at time *t*. x_{it} can be either positive or negative. The allocation vector is $x_t = (x_{1t}, ..., x_{Nt})^T$. This is **chosen at time** *t*.

 p_{it} is the **ex-dividend price**³ of the *i*th asset for purchase at time *t*. The vector of prices is $p_t = (p_{1t}, \ldots, p_{Nt})^T$. Known at time *t*.

 y_{it} is the **payoff of the** *i***th asset** at time t + 1. The vector of payoffs is $y_t = (y_{1t}, \ldots, y_{Nt})^T$. Not known at time t.

 c_t is the **capital reserve** of the financial institution⁴ at time t + 1. Not known at time t.

The **budget constraint**:

$$c_t + p_t^T x_t = y_t^T x_{t-1} (235)$$

³Ex-dividend price of a stock is the price without the value of the next dividend payment.

⁴For an individual investor c_t could be thought of as consumption.

15.2 Uncertainty

§ Moderate uncertainty:

- y_t is random and known to be normally distributed.
- Moments are estimated but uncertain:
 - Estimated mean of the payoff vector is μ_{yt} .
 - \circ Estimated covariance matrix of the payoff is Σ_{yt} .

§ Thus, from the budget constraint in eq.(235), the capital reserve is a normal random variable with estimated mean and variance:

$$\widetilde{\mu}_{ct} = -p_t^T x_t + \mu_{yt}^T x_{t-1}$$
(236)

$$\widetilde{\sigma}_{ct}^2 = x_{t-1}^T \Sigma_{yt} x_{t-1}$$
(237)

§ Error values of the estimated mean and standard deviation, $\tilde{\mu}_{ct}$ and $\tilde{\sigma}_{ct}$, are ε_{μ} and ε_{σ} .

§ Info-gap model for uncertainty in the distribution of the capital reserve, c_t :

$$\mathcal{U}(h) = \left\{ f(c_t) \sim N(\mu_{ct}, \sigma_{ct}^2) : \left| \frac{\mu_{ct} - \widetilde{\mu}_{ct}}{\varepsilon_{\mu}} \right| \le h, \\ \left| \frac{\sigma_{ct} - \widetilde{\sigma}_{ct}}{\varepsilon_{\sigma}} \right| \le h, \ \sigma_{ct} \ge 0 \right\}, \ h \ge 0$$
(238)

Performance requirement.

The α **quantile** of the distribution $f(c_t)$, denoted $q(\alpha, f)$, is the value of c_t for which the probability of being less than this value equals α . This quantile is defined in:

$$\alpha = \int_{-\infty}^{q(\alpha, f)} f(c_t) \,\mathrm{d}c_t \tag{239}$$

 α is typically small so $q(\alpha, f)$ may be negative.

§ The **performance requirement** is:

$$q(\alpha, f) \ge r_{\rm c} \tag{240}$$

We will use the robustness function to evaluate the confidence in satisfying this requirement for chosen investment, x_t .

Robustness function:

$$\widehat{h}(x_t, r_c) = \max\left\{h: \left(\min_{f \in \mathcal{U}(h)} q(\alpha, f)\right) \ge r_c\right\}$$
(241)

 $\S z_{\alpha}$ is the α quantile of the standard normal distribution.

- Assume: $\alpha < 1/2$ so that $z_{\alpha} < 0$.
- Typically α around 0.01.

 \S One can show:

$$\widehat{h}(x_t, r_c) = \frac{r_c - q(\alpha, \widetilde{f})}{\varepsilon_\sigma z_\alpha - \varepsilon_\mu}$$
(242)

or zero if this is negative.

• The numerator and denominator are both negative, so the robustness decreases as r_c increases towards $q(\alpha, \tilde{f})$.

15.4 **Opportuneness Function**

§ Windfall aspiration is:

$$q(\alpha, f) \ge r_{\rm w} > r_{\rm c} \tag{243}$$

§ Opportuneness:

$$\widehat{\beta}(x_t, r_w) = \min\left\{h: \left(\max_{f \in \mathcal{U}(h)} q(\alpha, f)\right) \ge r_w\right\}$$
(244)

 \S Inverse of opportuneness:

- M(h) denotes the **inner maximum** in eq.(244).
- *M*(*h*) is the **inverse of the opportuneness.**
- That is, a plot of M(h) vs. h is the same as a plot of r_w vs. $\hat{\beta}(x_t, r_w)$.
- We will derive an explicit expression from which to evaluate M(h).

§ **Ramp function:** r(x) = 0 if x < 0 and r(x) = x if $x \ge 0$.

\S One assumption:

- z_{α} is the α quantile of the standard normal distribution.
- We assume that $\alpha < 1/2$, so that $z_{\alpha} < 0$.

\S One can show:

$$q(\alpha, f) = \sigma_{ct} z_{\alpha} + \mu_{ct} \tag{245}$$

Proof:

$$\alpha = \operatorname{Prob}\left(x \le q(\alpha, f)\right) \tag{246}$$

$$= \operatorname{Prob}\left(\frac{x - \mu_{ct}}{\sigma_{ct}} \le \frac{q(\alpha, f) - \mu_{ct}}{\sigma_{ct}}\right)$$
(247)

Note that:

$$z = \frac{x - \mu_{ct}}{\sigma_{ct}} \sim \mathcal{N}(\mu_{ct}, \sigma_{ct})$$
(248)

$$z_{\alpha} = \frac{q(\alpha, f) - \mu_{ct}}{\sigma_{ct}}$$
(249)

Re-arranging eq.(249) leads to eq.(245).

\S Inverse of opportuneness function:

$$M(h) = r(\tilde{\sigma}_{ct} - \varepsilon_{\sigma}h)z_{\alpha} + \tilde{\mu}_{ct} + \varepsilon_{\mu}h$$
(250)

15.5 Policy Exploration

§ Example:

- One risk-free asset, i = 1, and a one uncorrelated risky asset, i = 2.
- Select the allocation.
- Price vector is $p_t = (7, 10)$.
- The level of confidence of the quantile is $\alpha = 0.01$.

• The standard deviation of the payoff of the risky asset is 5% of its estimated mean unless indicated otherwise.

• Thus $(\Sigma_{yt})_{22} = (0.05\mu_{yt,2})^2$. The other elements of the 2 × 2 covariance matrix Σ_{yt} are zero.

§ Trade-offs and zeroing (fig. 20):

- Robustness vs critical reserve.
- Opportuneness vs windfall reserve.

Figure 20: Robustness and opportuneness curves. $x_{t-1} = x_t = (0.7, 0.3)^T$. $\mu_{yt} = (1.04p_{1t}, 1.08p_{2t})^T$. $\varepsilon_{\mu} = 0.05\tilde{\mu}_{ct}$. $\varepsilon_{\sigma} = 0.3\tilde{\mu}_{ct}$.

Port-	$\mu_{yt,1} / p_{1t}$	$\mu_{yt,2} / p_{2t}$	$\widetilde{\mu}_{ct}$	$\widetilde{\sigma}_{ct}$	$\varepsilon_{\mu}/\widetilde{\mu}_{ct}$	$\varepsilon_{\sigma}/\widetilde{\sigma}_{ct}$
folio		·				
1	0.04	0.08	0.436	0.162	0.05	0.1
2	0.036	0.076	0.404	0.161	0.035	0.075

Table 1: Parameters of two portfolios. Robustness curves in fig. 21.

Choose between two portfolios, table 1.

- First portfolio has higher estimated mean payoffs and higher errors.
- Classical dilemma: portfolio 1 is better on average, but more uncertain.

Figure 21: Robustness curves. $x_{t-1} = x_t = (0.7, 0.3)^T$. See table 1.

Figure 22: Robustness and opportuneness curves for portfolios in fig. 21.

§ **Preference reversal**, fig. 21.

§ Robustness and opportuneness, fig. 22.

Figure 23: Robustness curves for two sequences of investments.

Figure 24: Robustness curves for 4 sequences of investments. Curves 1 and 2 reproduced from fig. 23.

§ Sequence matters, fig. 23.

- Sequence of investment vectors are reversed between the two portfolios.
- Two differences between outcomes:
 - \circ Portfolio 1 has much higher nominal α quantile (horizontal intercept).
 - Portfolio 2 has steeper slope, which implies lower cost of robustness.

§ Sequence matters, fig. 24.

- Portfolios 1 and 2 same as fig. 23.
- Portfolio 3 and 4 are similar, and without investment change over time.