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15 Strategic Asset Allocation

§ This section based on section 4.4 of Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational
Introduction, Palgrave.

§ Generic idea of an asset:
• Energy supply to different actuators: motion on complex terrain; robotics.
• Duration and force at load points for deflection, especially in non-linear system.
• Duration at search locations (looking for treasure or enemies).
• People developing innovative ideas or projects.
• Stocks or bonds in finance: monetary return.

§ Generic idea of strategic allocation:
• Dynamic setting: multiple time steps.
• Allocation at each time step.
• Budget limitation.
• “Returns” or “outcomes” at each step determine resources for next step.

§ Basic idea of asset allocation (“financial” model):
• Choose an allocation of resources (e.g. budget) between different assets.
• The future returns are random and the pdf is uncertain.
• You require high probability that the future balance is acceptable.

That is, the future capital reserve (or profit) must be adequate with high probability.

15.1 Budget Constraint

Basic variables:

xit is the quantity of the ith asset which is purchased at time t. xit can be either positive or negative.
The allocation vector is xt = (x1t, . . . , xNt)

T. This is chosen at time t.

pit is the ex-dividend price3 of the ith asset for purchase at time t. The vector of prices is pt =

(p1t, . . . , pNt)
T. Known at time t.

yit is the payoff of the ith asset at time t + 1. The vector of payoffs is yt = (y1t, . . . , yNt)
T. Not

known at time t.

ct is the capital reserve of the financial institution4 at time t + 1. Not known at time t.

The budget constraint:
ct + pT

t xt = yT
t xt−1 (235)

3Ex-dividend price of a stock is the price without the value of the next dividend payment.
4For an individual investor ct could be thought of as consumption.
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15.2 Uncertainty

§Moderate uncertainty:
• yt is random and known to be normally distributed.
•Moments are estimated but uncertain:
◦ Estimated mean of the payoff vector is µyt.
◦ Estimated covariance matrix of the payoff is Σyt.

§ Thus, from the budget constraint in eq.(235), the capital reserve is a normal random variable with
estimated mean and variance:

µ̃ct = −pT
t xt + µT

ytxt−1 (236)

σ̃2
ct = xT

t−1Σytxt−1 (237)

§ Error values of the estimated mean and standard deviation, µ̃ct and σ̃ct, are εµ and εσ.

§ Info-gap model for uncertainty in the distribution of the capital reserve, ct:

U (h) =
{

f (ct) ∼ N(µct, σ2
ct) :

∣∣∣∣
µct − µ̃ct

εµ

∣∣∣∣ ≤ h, (238)
∣∣∣∣
σct − σ̃ct

εσ

∣∣∣∣ ≤ h, σct ≥ 0
}

, h ≥ 0
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15.3 Performance and Robustness

Performance requirement.
The α quantile of the distribution f (ct), denoted q(α, f ), is the value of ct for which the probability
of being less than this value equals α. This quantile is defined in:

α =
∫ q(α, f )

−∞
f (ct)dct (239)

α is typically small so q(α, f ) may be negative.

§ The performance requirement is:
q(α, f ) ≥ rc (240)

We will use the robustness function to evaluate the confidence in satisfying this requirement for
chosen investment, xt.

Robustness function:

ĥ(xt, rc) = max
{

h :
(

min
f∈U (h)

q(α, f )
)
≥ rc

}
(241)

§ zα is the α quantile of the standard normal distribution.
• Assume: α < 1/2 so that zα < 0.
• Typically α around 0.01.

§ One can show:

ĥ(xt, rc) =
rc − q(α, f̃ )
εσzα − εµ

(242)

or zero if this is negative.
• The numerator and denominator are both negative, so the robustness decreases as rc increases

towards q(α, f̃ ).
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15.4 Opportuneness Function

§Windfall aspiration is:
q(α, f ) ≥ rw > rc (243)

§ Opportuneness:

β̂(xt, rw) = min
{

h :
(

max
f∈U (h)

q(α, f )
)
≥ rw

}
(244)

§ Inverse of opportuneness:
• M(h) denotes the inner maximum in eq.(244).
• M(h) is the inverse of the opportuneness.
• That is, a plot of M(h) vs. h is the same as a plot of rw vs. β̂(xt, rw).
•We will derive an explicit expression from which to evaluate M(h).

§ Ramp function: r(x) = 0 if x < 0 and r(x) = x if x ≥ 0.

§ One assumption:
• zα is the α quantile of the standard normal distribution.
•We assume that α < 1/2, so that zα < 0.

§ One can show:
q(α, f ) = σctzα + µct (245)

Proof:

α = Prob (x ≤ q(α, f )) (246)

= Prob
(

x− µct

σct
≤ q(α, f )− µct

σct

)
(247)

Note that:

z =
x− µct

σct
∼ N (µct, σct) (248)

zα =
q(α, f )− µct

σct
(249)

Re-arranging eq.(249) leads to eq.(245).

§ Inverse of opportuneness function:

M(h) = r(σ̃ct − εσh)zα + µ̃ct + εµh (250)
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15.5 Policy Exploration

§ Example:
• One risk-free asset, i = 1, and a one uncorrelated risky asset, i = 2.
• Select the allocation.
• Price vector is pt = (7, 10).
• The level of confidence of the quantile is α = 0.01.
• The standard deviation of the payoff of the risky asset is 5% of its estimated mean unless indi-

cated otherwise.
• Thus (Σyt)22 = (0.05µyt,2)2. The other elements of the 2× 2 covariance matrix Σyt are zero.

§ Trade-offs and zeroing (fig. 20):
• Robustness vs critical reserve.
• Opportuneness vs windfall reserve.
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Figure 20: Robustness and opportuneness curves.
xt−1 = xt = (0.7, 0.3)T . µyt = (1.04p1t, 1.08p2t)

T .
εµ = 0.05µ̃ct. εσ = 0.3µ̃ct.

Port- µyt,1/p1t µyt,2/p2t µ̃ct σ̃ct εµ/µ̃ct εσ/σ̃ct
folio

1 0.04 0.08 0.436 0.162 0.05 0.1
2 0.036 0.076 0.404 0.161 0.035 0.075

Table 1: Parameters of two portfolios. Robustness curves in fig. 21.
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Choose between two portfolios, table 1.
• First portfolio has higher estimated mean payoffs and higher errors.
• Classical dilemma: portfolio 1 is better on average, but more uncertain.
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Figure 21: Robustness curves.
xt−1 = xt = (0.7, 0.3)T . See ta-
ble 1.

Figure 22: Robustness and op-
portuneness curves for portfo-
lios in fig. 21.

§ Preference reversal, fig. 21.

§ Robustness and opportuneness, fig. 22.
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Figure 23: Robustness curves
for two sequences of invest-
ments.

Figure 24: Robustness curves
for 4 sequences of investments.
Curves 1 and 2 reproduced from
fig. 23.

§ Sequence matters, fig. 23.
• Sequence of investment vectors are reversed between the two portfolios.
• Two differences between outcomes:
◦ Portfolio 1 has much higher nominal α quantile (horizontal intercept).
◦ Portfolio 2 has steeper slope, which implies lower cost of robustness.

§ Sequence matters, fig. 24.
• Portfolios 1 and 2 same as fig. 23.
• Portfolio 3 and 4 are similar, and without investment change over time.




