
ps2-01.tex Problem Set on Robustness and Opportuneness 8

Flexible Column

Rigid Platform
? ?

F G

Figure 1: Platform for problem 9.

9. Dynamic stability of a platform. (p.50) A rigid beam-like platform is supported from
below at its midpoint by a flexible column which is at elastic equilibrium when the platform is
horizontal, as shown in fig. 1. The flexural stiffness of the elastic column is k [Nm/radian] and
it applies a restoring moment of force M = kθ when the platform is tilted by θ radians. The
width of the platform is 2L [m]. The platform is loaded at its two ends by static forces F and
G which are uncertain but bounded. That is, forces F and G belong to the following info-gap
model of uncertainty:

U(h, 0) = {F, G : |F | ≤ h, |G| ≤ h} , h ≥ 0 (24)

The platform is satisfactorily level if the angle of tilt at static equilibrium is never greater than
the critical value θc:

|θ| ≤ θc (25)

The condition of static equilibrium requires that the moment of force at the midpoint vanish:

0 = FL−GL+ kθ (26)

Determine the robustness and opportuneness functions of the platform. The decision vector
is q = (k, L)T . Study the variation of the immunity functions as these design variables are
changed.

10. Dynamic stability of a platform: continued. (p.51) We now modify problem 9 to consider
uncertain distributed loads, f(x) [N/m], −L ≤ x ≤ L, on the platform. Evaluate the robustness
and opportuneness for each of the following info-gap models for uncertainty in the load.

(a) Uniform-bound:

U(h, f̃) =
{
f(x) :

∣∣∣∣f(x)− f̃ cos
πx

L

∣∣∣∣ ≤ h

}
, h ≥ 0 (27)

where f̃ is a known constant.

(b) Fourier ellipsoid bound: The uncertain part of the load profile is a truncated sine series:

f(x) = f̃ cos
πx

L
+

N∑
n=1

cn sin
nπx

L
(28)

= f̃ cos
πx

L
+ cTσ(x) (29)

where c is the vector of uncertain Fourier coefficients and σ(x) is the vector of sine func-
tions. The info-gap model is:

U(h, f̃) =
{
f(x) = f̃ cos

πx

L
+ cTσ(x) : cTWc ≤ h2

}
, h ≥ 0 (30)

where W is a known, real, symmetric, positive definite matrix.
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(c) Different nominal load. How will the answers to questions 10a and 10b change if the
nominal load is:

f̃(x) = f̃ sin
πx

L
(31)
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Solution to Problem 9. (p.8) Solution: Static equilibrium. The mechanical model is the condition
for static equilibrium. Since the platform is rigid, equilibrium requires that the moment at the
midpoint is zero:

0 = FL−GL+ kθ (308)

which implies:

θ =
(G− F )L

k
(309)

The robustness is the greatest value of the uncertainty parameter h such that failure cannot occur:

ĥ = max

{
h : max

F,G∈U(h)
|θ| ≤ θc

}
(310)

The maximum θ up to uncertainty h is:

max
F,G∈U(h)

θ =
(h− (−h))L

k
=

2hL

k
(311)

The robust reliability is obtained by equating the maximum deflection to the critical value and solving
for h:

max
F,G∈U(h)

θ = θc =⇒ 2hL

k
= θc =⇒ ĥ =

θck

2L
(312)

Solution: Rotational vibration. Let µ [kg/m] be the linear mass density of the platform in
the horizontal direction. The moment of inertia is:

J = 2

∫ L

0
x2µ dx =

2

3
µL3 (313)

The equation of rotational vibration around the midpoint is:

Jθ̈ + kθ =M, θ(0) = θ̇(0) = 0 (314)

where M is the external moment of force at the midpoint:

M = (F −G)L (315)

The solution of eq.(328) is:

θ(t) =
1

Jω

∫ t

0
M sinωτ dτ (316)

=
M

Jω2
(1− cosωt) (317)

where the natural frequency is ω =
√
k/J .

The robustness is the greatest value of the uncertainty parameter h such that failure cannot
occur:

ĥ = max

{
h : max

F,G∈U(h)
|θ| ≤ θc

}
(318)

The maximum in this expression is:

max
F,G∈U(h)

|θ| = (h− (−h))L
Jω2

(1− cosωt) =
2hL

Jω2
(1− cosωt) (319)

Equating this maximum to the critical angle and solving for the uncertainty parameter yields the
robustness:

2hL

Jω2
(1− cosωt) = θc =⇒ ĥ(t) =

Jω2θc
2L(1− cosωt)

(320)
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Note that ĥ(t) is not monotonic versus t, but periodically approaches infinity.
In some situations we will be interested in the minimum over time of ĥ(t):

ĥ = min
t
ĥ(t) =

Jω2θc
4L

(321)

Solution to Problem 10. (p.8) (a, part 1) Uniform-bound uncertainty; static equilibrium. A
condition for static mechanical equilibrium is balance of the torque at the midpoint:

0 = kθ −
∫ L

−L
xf(x) dx (322)

Therefore we adopt the following mechanical model:

θ =
1

k

∫ L

−L
xf(x) dx (323)

The robustness is the greatest uncertainty which does not entail the possibility of failure:

ĥ = max

{
h : max

f∈U(h,f̃)

|θ| ≤ θc

}
(324)

As before, we must find the maximum deflection up to uncertainty h. This maximum occurs
when the load f(x) is minimum (f(x) = −h + f̃ cos πx

L ) when x is negative, and maximal (f(x) =

+h+ f̃ cos πx
L ) when x is positive:

max
f∈U(h,f̃)

θ =
1

k

∫ 0

−L

[
−h+ f̃ cos

πx

L

]
xdx+

1

k

∫ L

0

[
h+ f̃ cos

πx

L

]
xdx (325)

The two terms containing f̃ cancel each other, resulting in:

max
f∈U(h,f̃)

θ =
2h

k

∫ L

0
xdx =

hL2

k
(326)

Equating this maximum deflection to the critical value θc and solving for the uncertainty parameter
h, yields the robustness:

hL2

k
= θc =⇒ ĥ =

θck

L2
(327)

(a, part 2) Uniform-bound uncertainty; rotational vibration. We could also analyze this
problem dynamically rather than statically. That is, we consider the motion of the platform from
zero initial conditions, with constant but uncertain load. The equation of motion is:

Jθ̈ + kθ =M, θ(0) = θ̇(0) = 0 (328)

where the moment of inertial J is:

J = 2

∫ L

0
x2µ dx =

2

3
µL3 (329)

The torque at the midpoint is:

M = −
∫ L

−L
xf(x) dx (330)

We can think of this load as a linear superposition of inputs: xf(x) at each x. Thus the output is
the linear superposition of responses:

θ(t) = − 1

Jω

∫ L

−L

∫ t

0
xf(x) sinωτ dτ dx (331)
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These two integrals can be separated, resulting in:

θ(t) =
1

Jω2
(1− cosωt)

∫ L

−L
xf(x) dx (332)

Since the load is constant, the sign of the angle of deflection is constant, unlike for an impulse load.
The robustness is the greatest h which does not entail failure:

ĥ = max

{
h : max

f∈U(h,f̃)

|θ| ≤ θc

}
(333)

Arguing as in eqs.(325) and (326), the maximum of the integral in eq.(332) becomes:

max
f∈U(h,f̃)

∫ L

−L
xf(x) dx = hL2 (334)

Now equating the maximum deflection to the critical deflection and solving for h yields the robustness:

hL2

Jω2
(1− cosωt) = θc =⇒ ĥ(t) =

Jω2θc
L2(1− cosωt)

(335)

Note the periodic minima and poles of ĥ(t). The horizon of uncertainty, h, in the info-gap model of
eq.(27), has units of [N/m], which are also the units of ĥ.

(b, part 1) Fourier-ellipsoid bound uncertainty; static equilibrium. From eq.(323), the
nominal deflection vanishes because f̃(x) is an even function:

θ̃ =
1

k

∫ L

−L
xf̃(x) dx = 0 (336)

Hence, the total deflection is:

θ =
1

k

∫ L

−L
xf(x) dx (337)

=
1

k

∫ L

−L
xcTσ(x) dx (338)

=
1

k

N∑
n=1

cn

∫ L

−L
x sin

nπx

L
dx (339)

=
2L2

kπ

N∑
n=1

(−1)n+1 cn
n

(340)

= cT z (341)

where we have defined an N -vector z whose elements are:

zn = (−1)n+1 2L
2

nπk
(342)

The maximum deflection, up to uncertainty h, is the solution of the following optimization prob-
lem:

max
f∈U(h)

θ = max
cTWc=h2

cT z (343)

We will use the method of Lagrange multipliers to find this maximum. Define the auxiliary function:

H = cT z + λ
[
h2 − cTWc

]
(344)

λ is the unknown Lagrange multiplier. Its value is found by employing the constraint:

h2 = cTWc (345)
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The term in the square brackets in eq.(344) equals zero when the constraint is observed. Thus,
maximizing H is equivalent to maximizing cT z. Thus, we must solve:

0 =
∂H

∂c
(346)

Differentiating H in eq.(344) results in:

∂H

∂c
= z − 2λWc (347)

(Recall that W is a symmetric matrix.) Eq.(347) implies that an optimizing c-vector is:

c =
1

2λ
W−1z (348)

Substituting from eq.(348) for c into the constraint in eq.(345) one finds:

h2 =
1

4λ2
zTW−1WW−1z (349)

Thus the constraint determines the Lagrange multiplier as:

1

2λ
=

±h√
zTW−1z

(350)

Now, combining this with eq.(348), one finds the vector of Fourier coefficients which optimize the
deflection to be:

c =
±h√

zTW−1z
W−1z (351)

Hence, the extremal angles of deflection are:

max
f∈U(h)

θ = max
cTWc=h2

cT z = ±h
√
zTW−1z (352)

Equating the maximum absolute deflection to the critical deflection yields the robustness:

h
√
zTW−1z = θc =⇒ ĥ =

θc√
zTW−1z

(353)

Solution: (b, part 2) Fourier-ellipsoid bound uncertainty; rotational vibration. The
moment, which is constant, is:

M = −
∫ L

−L
xf(x) dx = −

∫ L

−L
xf̃(x) dx− cT

∫ L

−L
xσ(x) dx = M̃ + cT z (354)

where M̃ is the nominal, anticipated moment, and it and z are known and defined in this relation.
The angle of deflection is:

θ(t) =
1

Jω

∫ t

0
M sinωτ dτ = (M̃ + cT z)

1

Jω

∫ t

0
sinωτ dτ = (M̃ + cT z)

1

Jω2
(1− cosωt) (355)

The robustness is:

ĥ = max

{
h : max

f∈U(h,f̃)

|θ| ≤ θc

}
(356)

To evaluate the robustness we must maximize cT z, for which we employ Lagrange optimization.
Define:

H = cT z + λ(h2 − cTWc) (357)
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The extrema occur at:

0 =
∂H

∂c
= z − 2λWc (358)

which implies that:

c =
1

2λ
W−1z (359)

Employing the constraint, h2 = cTWc, we find that the optimizing c is:

c =
±h√

zTW−1z
W−1z (360)

From this we obtain:

max
f∈U(h,f̃)

|θ| =
(
|M̃ |+ h

√
zTW−1z

) 1

Jω2
(1− cosωt) (361)

The robustness is the greatest value of h at which this expression does not exceed θc:

ĥ =

(
θc

Jω2(1− cosωt)
− |M̃ |

)
1√

zTW−1z
(362)

unless this expression is negative, in which case ĥ = 0.


