- 29. Future foreign earnings. (based on exam, 21.7.2014) (p.98) Your employment contract states that at the end of k years from now you will receive a payment, in \$'s, of the fixed sum A_k . The general price inflation of \$'s will be f_j in year j for j = 1, ..., k. The exchange rate between \$'s and pesos at the end of year k will be r_k peso/\$. The general price inflation of pesos will be ϕ_j in year j for j = 1, ..., k.
 - (a) What is the real value of A_k in \$'s at the start of year 1?
 - (b) What is the real value of A_k in pesos at the start of year 1 if you transfer the payment when it is received, which is at the end of year k?
 - (c) The value of the payment A_k is firmly fixed by contract. However, suppose the dollar inflation rates f_j are highly uncertain, while the peso inflation rates are very stable and well known. The exchange rate r_k is also highly uncertain. Consider the following infogap model for f_j and r_k :

$$\mathcal{U}(h) = \left\{ r_k, f_j, j = 1, \dots, k : r_k \ge 0, \left| \frac{r_k - \tilde{r}_k}{\tilde{r}_k} \right| \le h, \left| \frac{f_j - \tilde{f}_j}{\tilde{f}_j} \right| \le h \right\}, \quad h \ge 0$$
(13)

You require that the real peso value, at the start of year 1, of the year-k earnings in \$'s, be no less than R_c . Derive an explicit algebraic expression for the robustness to uncertainty.

Solution to Problem 29, Future foreign earnings, (p.25).

(29a) The real value at time 0, in \$'s, of the \$ payment A_k at the end of year k is, from eq.(265) (see the derivation there, p.84):

$$R_{0,k} = A_{0,k} = A_k \prod_{j=1}^k (1+f_j)^{-1}$$
(360)

(29b) The foreign nominal value in year k is:

$$A_{k,\text{for}} = r_k A_k \tag{361}$$

Eq.(360) applies to pesos when using the peso inflation rates, so the real value at time 0, in peso's, of the \$ payment A_k after transfering to pesos at the end of year k is:

$$R_{0,k,\text{for}} = A_{0,k,\text{for}} = A_{k,\text{for}} \prod_{j=1}^{k} (1+\phi_j)^{-1}$$
(362)

$$= r_k A_k \prod_{j=1}^k (1+\phi_j)^{-1}$$
(363)

(29c) The uncertainty in the \$ inflation is irrelevant, because the \$ inflation rate does not influence the peso value. This is because the value of A_k is fixed in dollars. However, the uncertainty in the exchange rate is relevant. The robustness is:

$$\widehat{h} = \max\left\{h: \left(\min_{r_k \in \mathcal{U}(h)} R_{0,k,\text{for}}(r_k)\right) \ge R_c\right\}$$
(364)

Let m(h) denote the inner minimum, which occurs for the lowest exchange rate at horizon of uncertainty h: $r_k = (1-h)^+ \tilde{r}_k$. From eq.(363):

$$m(h) = (1-h)^{+} R_{0,k,\text{for}}(\tilde{r}_k)$$
 (365)

Equating this to R_c and solving for h yields the robustness:

$$\widehat{h} = 1 - \frac{R_{\rm c}}{R_{0,k,{\rm for}}(\widetilde{r}_k)} \tag{366}$$

or zero if this is negative.

98