- 40. **Present worth, interest, inflation and uncertainty** (based on exam, 27.9.2016) (p.115)
	- (a) Consider an N-year project with constant annual interest i and no inflation. The revenue at the end of year k is $R_k = (1+i)^k R_0$ where R_0 is positive. The cost at the end of year k is C which is positive and constant. The initial investment at the beginning of the first year is S , which is positive.
		- i. Derive an explicit algebraic expression for the present worth.
		- ii. Given that $S = gC$, $R_0 = C$, $N = 10$ and $i = 0.04$. Find the largest value of g for which the PW is non-negative.
	- (b) Consider an N -year project with constant annual interest i and no inflation. The revenue and the cost at the end of each year are R and C which are both positive constants. The initial investment at the beginning of the first year is S , which is positive. Suppose that the present worth equals zero for specific positive values of S, R, C, i and N. Now suppose that i is increased while S and N remain constant. Which of the following must be true In order for the present worth to remain non-negative:
		- i. $R C$ must increase.
		- ii. $R C$ must decrease.
		- iii. $R C$ must remain the same.
		- iv. The direction of change in $R C$ depends on the specific values of S, N and i.
	- (c) Consider a project with constant annual interest i and no inflation. The revenue and the cost at the end of each year are R and C which are both positive constants. The initial investment at the beginning of the first year is S , which is positive. The project will run forever, so $N = \infty$. Which of the following statements is true:
		- i. The present worth is infinite for any $i > 0$.
		- ii. The present worth is infinite only for any $i > 0$ that is also less than some finite value.
		- iii. The present worth is finite for any $i > 0$.
		- iv. The present worth is finite only for any $i > 0$ that is also less than some finite value.
	- (d) Consider an N-year project with constant annual interest i and no inflation. The initial investment at the beginning of the first year is S , which is positive. The revenue and the cost at the end of each year are R and C which are both positive constants, and the revenue is proportional to the cost according to $R = gC$ where g is constant but uncertain according to this info-gap model:

$$
\mathcal{U}(h) = \left\{ g : \left| \frac{g - \tilde{g}}{w} \right| \le h \right\}, \quad h \ge 0 \tag{32}
$$

where \tilde{g} and w are known positive constants. We require that the present worth be no less than the critical value PW_c . Derive an explicit algebraic expression for the robustness function.

(e) Repeat problem 40d with the following info-gap model:

$$
\mathcal{U}(h) = \left\{ g: \ g \ge 1, \ \left| \frac{g - \tilde{g}}{w_g} \right| \le h, \ \left| \frac{C - \tilde{C}}{w_c} \right| \le h \right\}, \quad h \ge 0 \tag{33}
$$

where \tilde{g} , w_q , \tilde{C} and w_c are known positive constants. Derive an explicit algebraic expression for the inverse of the robustness function.

(f) Consider constant monthly inflation f . You have a new job and the real value of your monthly salary, at the start of your first month, is R_0 . However, the job actually pays

you at the end of each month with a nominal sum whose real value is R_0 . What is your nominal salary at the end of the k th month?

(g) Continue part 40f and consider f uncertain according to this info-gap model:

$$
\mathcal{U}(h) = \left\{ f : \left| \frac{f - \tilde{f}}{w} \right| \le h \right\}, \quad h \ge 0 \tag{34}
$$

where \tilde{f} and w are known positive constants. We require that the nominal salary at the end of the kth month be no less than S_c , which is positive. Derive an explicit algebraic expression for the robustness function.

- (h) You will invest $S = 1000 at time $t = 0$ in a project that returns constant nominal annual interest $i_{\text{nom}} = 0.08$. The constant annual inflation is $f = 0.06$. What is the nominal value of the investment after $N = 12$ years? What is the real value at that time? What is the real interest rate?
- (i) You will invest \$S at time $t = 0$ in a project that returns constant nominal annual interest i_{nom} . The constant annual inflation is f. However, both i_{nom} and f are uncertain, as expressed by this info-gap model:

$$
\mathcal{U}(h) = \left\{ i_{\text{nom}}, f: i_{\text{nom}} \ge 0, \left| \frac{i_{\text{nom}} - \tilde{i}_{\text{nom}}}{w_i} \right| \le h, \left| \frac{f - \tilde{f}}{w_f} \right| \le h \right\}, \quad h \ge 0 \tag{35}
$$

where $i_{\rm nom},\,w_i,\,f$ and w_f are known positive constants. We require that the real value of the investment at the end of k years be no less than R_c .

- i. Derive an explicit algebraic expression for the inverse of the robustness function.
- ii. What is the value of the robustness if $R_c = 0$.
- iii. What is the value of the robustness if $R_{\rm c} =$ $\left(1+\widetilde{i}_{\mathrm{nom}}\right)$ $1+f$ \setminus^k $S\mathsf{?}$
- (i) Consider an N-year project with constant positive revenue R and constant positive cost C at the end of each year. The annual interest rate is i and there is no inflation. The initial investment, at the start of the first year, is S .
	- i. If $S = 0$, what is the lowest ratio R/C at which the project has a benefit-cost ratio (BCR) no less than one?
	- ii. If $C=0$ and $R>0$, what is the lowest value of S at which the BCR is less than one for all values of N ?

Solution to Problem 40, Present worth, interest, inflation and uncertainty (p.36).

(40(a)i) The present worth is:

$$
PW = -S + \sum_{k=1}^{N} (1+i)^{-k} (R_k - C_k)
$$
\n(501)

$$
= -S + R_0 \sum_{k=1}^{N} (1+i)^{-k} (1+i)^{k} - C \sum_{k=1}^{N} (1+i)^{-k}
$$
 (502)

$$
= -S + R_0 N - \underbrace{\frac{1 - (1 + i)^{-N}}{i}}_{\delta(i)} C
$$
 (503)

(40(a)ii) From eq.(503) we find:

$$
PW = -gC + NC - \delta(i)C \ge 0 \implies g \le N - \delta(i) = 10 - \frac{1 - 1.04^{-10}}{0.04} = \boxed{1.88910}
$$
(504)

(40b) From eq.(501), the present worth is:

$$
PW = -S + \delta(i)(R - C) \tag{505}
$$

where $\delta(i)$ is defined in eq.(503). The parameters for which the PW is zero are all positive, which implies that $R - C > 0$. From the geometric series that defines $\delta(i)$, e.g. the righthand sum in eq.(502), we conclude that:

$$
\frac{\partial \delta(i)}{\partial i} < 0 \tag{506}
$$

Hence, from eq.(505) we conclude that:

$$
\frac{\partial \mathsf{PW}}{\partial i} < 0 \tag{507}
$$

Finally, we conclude that, if i increases from a constellation of parameters at which $PW = 0$, we see that $R - C$ must increase in order for the PW to remain positive.

Thus statement
$$
40(b)
$$
 is the only true statement.

(40c) The present worth is:

$$
PW = -S + \delta(i)(R - C)
$$
\n(508)

We note that:

$$
\lim_{N \to \infty} \delta(i) = \frac{1}{i}
$$
\n(509)

Hence the PW is:

$$
PW = -S + \frac{R - C}{i}
$$
 (510)

This is finite for any positive i. Thus statement $40(c)$ iii is the only true statement. **(40d)** The present worth is:

$$
PW = -S + \delta(i)(gC - C) = -S + \delta(i)(g - 1)C
$$
\n(511)

The robustness is defined as:

$$
\widehat{h}(\mathsf{PW}_c) = \max\left\{h : \left(\min_{g \in \mathcal{U}(h)} \mathsf{PW}\right) \geq \mathsf{PW}_c\right\}
$$
\n(512)

Let $m(h)$ denote the inner minimum, which occurs for $g = \tilde{g} - wh$, so:

$$
m(h) = -S + \delta(i) \left[(\tilde{g} - wh)C - C \right] \ge \mathsf{PW}_{\mathrm{c}} \tag{513}
$$

Hence:

$$
\widehat{h}(\mathsf{PW}_c) = \frac{-S + \delta(i)(\widetilde{g}C - C) - \mathsf{PW}_c}{\delta(i)wC} = \frac{\mathsf{PW}(\widetilde{g}) - \mathsf{PW}_c}{\delta(i)wC} \tag{514}
$$

or zero if this is negative.

(40e) The present worth is specified in eq.(511). The robustness is defined as:

$$
\widehat{h}(\mathsf{PW}_c) = \max\left\{h : \left(\min_{g,C \in \mathcal{U}(h)} \mathsf{PW}\right) \geq \mathsf{PW}_c\right\}
$$
\n(515)

Let $m(h)$ denote the inner minimum. The info-gap model requires that $g\geq 1$, so define x^{\star} to equal x if $x \ge 1$ and to equal 1 otherwise. Thus $m(h)$ occurs for:

$$
g = (\tilde{g} - w_g h)^{\star}, \quad C = \tilde{C} - w_c h \tag{516}
$$

Thus the inverse of the robustness function is:

$$
m(h) = -S + \delta(i) \left[(\tilde{g} - w_g h)^* - 1 \right] (\tilde{C} - w_c h)
$$
\n(517)

(40f) Your nominal salary at the end of the kth month is:

$$
S_k = (1 + f)^k R_0 \tag{518}
$$

(40g) The robustness is defined as:

$$
\widehat{h}(\mathsf{PW}_c) = \max\left\{h : \left(\min_{f \in \mathcal{U}(h)} S_k\right) \ge S_c\right\}
$$
\n(519)

Let $m(h)$ denote the inner minimum which occurs for $f = \tilde{f} - wf$:

$$
m(h) = (1 + \tilde{f} - wh)^k R_0 \ge S_c \implies \left[\widehat{h}(S_c) = \frac{1}{w} \left[1 + \tilde{f} - \left(\frac{S_c}{R_0}\right)^{1/k}\right]\right]
$$
(520)

or zero if this is negative.

(40h) The nominal value at the end of k years is:

$$
A_k = (1 + i_{\text{nom}})^k S \implies \boxed{A_{12} = 1.08^{12} \times 1000 = \$2,518.17}
$$
 (521)

The real value at the end of k years is:

$$
R_k = (1+f)^{-k} A_k = (1+f)^{-k} (1+i_{\text{nom}})^k S \implies R_{12} = \left(\frac{1.08}{1.06}\right)^{12} \times 1000 = \$1,251.45
$$
 (522)

The real interest rate is defined by:

$$
R_k = (1 + i_\mathrm{r})^k S \tag{523}
$$

Comparing this with the left hand part of eq.(522) we see that the real interest rate, i_r , is related to the inflation, f , and the nominal interest rate, i_{nom} , by:

$$
(1+i_r)^k = (1+f)^{-k}(1+i_{\text{nom}})^k \implies (1+i_r)^{-k}(1+f)^{-k} = (1+i_{\text{nom}})^{-k} \implies (1+i_r)(1+f) = 1+i_{\text{nom}}
$$
(524)

Hence:

$$
i_{\rm r} = \frac{1 + i_{\rm nom}}{1 + f} - 1 = \frac{i_{\rm nom} - f}{1 + f} \implies \boxed{i_{\rm r} = \frac{0.02}{1.06} = 0.018867}
$$
 (525)

(40(i)i) The real value of the investment at the end of k years is, from eq.(522):

$$
R_k(i_{\text{nom}}, f) = \left(\frac{1 + i_{\text{nom}}}{1 + f}\right)^k S \tag{526}
$$

The robustness is defined as:

$$
\widehat{h}(R_{\rm c}) = \max\left\{h : \left(\min_{i_{\rm nom}, f \in \mathcal{U}(h)} R_k\right) \ge R_{\rm c}\right\} \tag{527}
$$

Let $m(h)$ denote the inner minimum, which occurs for $i_{\rm nom} = (i_{\rm nom} - w_i h)^+$ and $f = f + w_f h$. Thus the inverse of the robustness function is:

$$
m(h) = \left(\frac{1 + (\tilde{i}_{\text{nom}} - w_i h)^+}{1 + \tilde{f} + w_f h}\right)^k S
$$
 (528)

(40(i)ii) From eq.(528) we see that $m(h)$ is positive for all finite positive h. Also:

$$
\lim_{h \to \infty} m(h) = 0 \tag{529}
$$

Thus $m(h) = R_c = 0$ implies that $\widehat{h}(0) = \infty$.

(40(i)iii) From eq.(528) we see that $m(h) = R_{\rm c} =$ $\left(1+\widetilde{i}_{\mathrm{nom}}\right)$ $1+f$ \setminus^k S if $h=0. \big\vert$ Thus $h(R_\mathrm{c})=0 \big\vert$ for this value of R_c .

(40(j)i) The BCR is:

$$
\text{BCR} = \frac{\text{PW}_b}{\text{PW}_c} \text{ where } \text{PW}_b = \sum_{k=1}^{N} (1+i)^{-k} R = \delta(i)R, \text{PW}_c = S + \sum_{k=1}^{N} (1+i)^{-k} C = S + \delta(i)C \text{ (530)}
$$

 $S = 0$ implies that BCR = R/C . Thus:

$$
\text{BCR} \ge 1 \quad \text{if and only if} \quad \frac{R}{C} \ge 1 \tag{531}
$$

(40(j)ii) $C = 0$ and eq.(530) imply:

$$
\text{BCR} = \frac{\delta(i)R}{S} \tag{532}
$$

 $\delta(i)$ is:

$$
\delta(i) = \sum_{k=1}^{N} (1+i)^{-k} = \frac{1 - (1+i)^{-N}}{i}
$$
\n(533)

From these relations we see that:

$$
\frac{\partial \delta(i)}{\partial N} > 0 \quad \text{and} \quad \lim_{N \to \infty} \delta(i) = \frac{1}{i}
$$
 (534)

Hence:

$$
\max_{N} \text{BCR} = \frac{R}{iS} \tag{535}
$$

We require that $\frac{R}{iS} < 1,$ so we can assert:

BCR < 1 for all N, if and only if
$$
S > \frac{R}{i}
$$
 (536)