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1 Incommensurate Benefits and Costs

§ Engineering design.

• Robotic motion.

◦ Benefits:1 stability, locational accuracy (mm).

◦ Costs: components, assembly ($, or years of development).

• Airframe design.

◦ Benefits: payload (kg) or speed (m/s).

◦ Costs: materials and construction ($), or size (m3), or weight (kg).

• Communication technology.

◦ Benefits: transmission rate (bytes/s).

◦ Costs: materials and manufacturing ($) or environmental damage (e.g. lost species).

§ Infra-structure projects:

• Roads.

◦ Benefits: transportation (# people×km).

◦ Costs: materials, labor ($), or political “capital” lost due to taxation.

• Parks.

◦ Benefits: recreation (# people-days).

◦ Costs: materials, labor, land ($).

• Sewage.

◦ Benefits: public health (# saved lives).

◦ Costs: materials, labor ($).

• Flood control.

◦ Benefits: flood safety (# saved lives and property).

◦ Costs: materials, labor ($).

§ National defense.

◦ Benefits: public security (# saved lives).

◦ Costs: materials, labor ($), or opportunity costs of lost health, arts, etc.

§ The goal:

• Given several alternative options, each technologically acceptable.

• Select one option or prioritize all the options.

§ The problem: benefit and cost have different units.

• The costs are (often) monetary, but the benefits (and dis-benefits) are not.

• Net worth, “benefit [e.g. mm] − cost [$]” is dimensionally inconsistent.

• Thus we cannot simply apply the capital investment and money-time relations

developed previously.2

§ The approach: benefit-cost ratio (BCR).

Benefit-cost ratio is meaningful. E.g.:

Benefit (e.g. # lives or distance in km)

Cost ($)
(1)

§ Additional problems:

• Uncertainty.

1Benefit: toelet. Cost: alut.
2See lecture notes on Money-Time Relationships and Their Applications, money-time02.tex.
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• Political considerations.

• The groups that benefit may not be the only groups that pay the cost.

§ BCR commonly used to evaluate public projects.

§ Private vs Public projects:3

• Purpose:

◦ Private: provide goods and/or services at a profit. Maximize or satisfice profit.

◦ Public: Provide services without profit; protect lives and property; provide jobs.

• Source of capital:

◦ Private: Private investors and lenders.

◦ Public: Taxation and private lenders.

• Method of financing:

◦ Private: Individual ownership; partnerships; corporations.

◦ Public: Taxation; govt bonds; user fees.

• Nature of benefits:

◦ Private: Monetary.

◦ Public: Often not monetary or difficult to monetize.

• Measure of efficiency:

◦ Private: rate of return on capital.

◦ Public: Very difficult; comparisons difficult.

• Multiplicity of purposes:

◦ Private: Not common.

◦ Public: Common. E.g.: Dam stores water, protects property, provides recreation.

• Conflict among purposes:

◦ Private: Uncommon.

◦ Public: Common. E.g.: public highways enable transport but endanger ecology.

• Conflict of interests among stake holders:

◦ Private: Uncommon. Only one stake holder, or many with a common profit motive.

◦ Public: Common. Often several or many stake holders.

• Project duration:

◦ Private: Usually short to moderate, 5–20 years.

◦ Public: Often long: 20–60 years or more.

• Beneficiary:

◦ Private: Project owner(s) or client.

◦ Public: General public.

• Relation between beneficiaries and suppliers of capital:

◦ Private: Usually direct: same agents.

◦ Public: Usually indirect or partial, via taxation.

• Effect of politics:

◦ Private: Little to moderate.

◦ Public: Frequent. Short-term tenure of decision makers, pressure groups,

zoning and legal restrictions.

3Adapted from DeGarmo, et al., table 6-1, p.240.
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2 Monetizing the Benefit-Cost Ratio

2.1 Generic Monetization

§ Suppose we can monetize the benefits. E.g.: the cost (value) of a human life.

• N = number of periods.

• Cn = operating cost (dollars) at end of period n.

• S = initial capital investment at start of period 1.

• ic = interest rate on capital.

• Large ic (e.g. ic = 0.15) means:

◦ Spending $1 now is the same as spending many $’s later, namely $(1 + ic)
n1 at time n.

◦ Spending many $’s later is no more difficult than spending $1 now,

because later we will be richer.

• Present worth of initial investment and costs:4

Cpw = S +
N∑

n=1

(1 + ic)
−nCn (2)

• Bn = monetized benefit (dollars) at end of period n.

• ib = discount factor on benefits, reflecting, for instance,

future technological improvements or economic growth,

implying enhanced future abilities.

• Large ib (e.g. ib = 0.5) means:

◦ Gaining $1 now is the same as gaining many $’s later, namely $(1 + ib)
n1 at time n.

◦ Gaining many $’s later is no more valuable than gaining $1 now,

because later we will be richer.

◦ Large economic or technological growth.

• Note different discount rates for costs and benefits because

costs and benefits are substantively different.

This is different from ordinary time value of money.

• Present worth of the benefits:

Bpw =
N∑

n=1

(1 + ib)
−nBn (3)

• The BCR is:

BCR =
Bpw

Cpw
(4)

=

∑N
n=1(1 + ib)

−nBn

S +
∑N

n=1(1 + ic)−nCn

(5)

• The project is worthwhile, from a benefit-cost perspective, if:

BCR > 1 (6)

• The present worth (PW ) of the project is:

PW = Bpw − Cpw (7)

=
N∑

n=1

(1 + ib)
−nBn − S −

N∑
n=1

(1 + ic)
−nCn (8)

4See lecture notes on Money-Time Relationships and Their Applications, money-time02.tex, for discussion of present
worth.
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• The project is worthwhile, from a PW perspective, if:

PW > 0 (9)

• Question: Will eqs.(6) and (9) always:

◦ Decide the same on any given project? Yes: PW > 0 if and only if BCR > 1.

◦ Prioritize projects the same? Not always, as we will see.

2.2 Do PW and BCR Always Agree on Prioritization?

• Consider two projects, 1 and 2, with notation of section 2.1, p.4 and:

◦ Cj = Cpw for project j = 1 or 2, eq.(2).

◦ Bj = Bpw for project j = 1 or 2, eq.(3).

◦ Sj = S for project j = 1 or 2.

• Suppose:

PW1 = B1 − S1 − C1 > B2 − S2 − C2 = PW2 (10)

So project 1 is PW -preferred.

• But suppose project 1 is more costly but also more beneficial:

S1 + C1 = S2 + C2 +D and B1 = B2 + d where D > 0, d > 0 (11)

Question: What dilemma is embedded in these relations? Is it a BCR or a PW dilemma? Or both?

Thus:

PW1 = B2 + d︸ ︷︷ ︸
B1

− (S2 + C2 +D)︸ ︷︷ ︸
S1+C1

= PW2 + d−D (12)

Eqs.(10) and (12) imply:

d > D (13)

• Eq.(11) implies:

BCR1 =
B1

S1 + C1
=

B2 + d

S2 + C2 +D
(14)

• Hence project 2 is BCR-preferred if:

BCR1 < BCR2 (15)

⇐⇒ B2 + d

S2 + C2 +D
<

B2

S2 + C2
(16)

⇐⇒ (B2 + d)(S2 + C2) < B2(S2 + C2 +D) (17)

⇐⇒ d(S2 + C2) < B2D (18)

⇐⇒ d

D
<

B2

S2 + C2
(19)

⇐⇒ d

D
< BCR2 (20)

So project 2 is BCR-preferred if and only if eq.(20) holds.

• Eqs.(10)–(13) and (20) can all hold, so

PW and BCR can disagree on prioritization of the projects.

• Why is this important?

• Is one method (PW or BCR) right and the other wrong?

• How should you choose which method to use? Perhaps rank them by robustness to uncertainty.
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2.3 Monetizing Human Life

§ Continue section 2.1, p.4, with this benefit function:

• Bn = KnL where:

◦ L = value in dollars of a human life.

◦ Kn = number of lives saved at end of period n.

• From eqs.(4) and (5), p.4, the BCR is:

BCR =
Bpw

Cpw
(21)

=
L
∑N

n=1(1 + ib)
−nKn

S +
∑N

n=1(1 + ic)−nCn

(22)

• Consider following numerical values:

◦ N = 40 years.

◦ S = $1,000,000.

◦ Cn = $500,000 each year.

◦ Kn = 100 each year.

◦ L = $50,000.

◦ ic = 0.05. Interest rate on capital.

◦ ib = 0.1. Discount rate on future lives.

What does ib > ic imply? (Perhaps: large anticipated future population)

• The BCR of eq.(22) is:

BCR =
LK

∑N
n=1(1 + ib)

−n

S + C
∑N

n=1(1 + ic)−n
(23)

=
LK 1−(1+ib)

−N

ib

S + C 1−(1+ic)−N

ic

(24)

=
LKδf (ib)

S + Cδf (ic)
(25)

Where δf (i) is a “discount function:”

δf (i) =
1− (1 + i)−N

i
(26)

• We find:

◦ δf (ib) = 9.7791, δf (ic) = 17.1591, BCR = 5.1041.

• Project is highly justified based on the BCR analysis:

$5.1 of present-worth benefit for each $1 of present-worth cost.
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2.4 Monetizing Human Life with Uncertain L
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BCRc

ĥ(BCRc)

Figure 1: Robustness curve, eq.(32), with parameter values of section 2.3 and sL = 0.3L̃ =$15,000.

§ Continue section 2.3, p.6, with uncertain L:

U(h) =
{
L :

∣∣∣∣∣L− L̃

sL

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (27)

• Require: BCR(L) ≥ BCRc.

• Robustness:

ĥ(BCRc) = max

{
h :

(
min

L∈U(h)
BCR(L)

)
≥ BCRc

}
(28)

• Inner minimum, m(h), occurs at L = L̃− sLh. From eq.(25), p.6:

m(h) =
Kδf (ib)

S + Cδf (ic)︸ ︷︷ ︸
Q=BCR(L̃)/L̃

(L̃− sLh) (29)

• Equate this to BCRc and solve for h to find robustness:

ĥ(BCRc) =
QL̃−BCRc

sLQ
(30)

=
BCR(L̃)−BCRc

sLBCR(L̃)/L̃
(31)

=
L̃

sL

(
1− BCRc

BCR(L̃)

)
or zero if this is negative (32)
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Figure 2: Robustness curve, eq.(32), with parameter values of section 2.3 and sL = 0.3L̃ =$15,000.
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• Zeroing: ĥ[BCR(L̃)] = 0.

• Trade off: slope = − 1

sLQ
= − L̃

sLBCR(L̃)
.

Question: Do we want small or large negative slope? See fig. 2, p.7.

Steep slope: low cost of robustness: is that good or bad?

Low cost of robustness if L̃ ≫ sL (low uncertainty) or if BCR(L̃) is small (low value).

• See fig. 2 with numerical values from section 2.3, p.6, and sL = 0.3L̃ =$15,000.

• Moderate robustness at moderate BCRc, fig. 2, p.7:

◦ Question: Could you responsibly “sell” this program with a BCR of 4 or 5?

◦ ĥ(BCRc = 1) = 2.7.

◦ ĥ(BCRc = 2) = 2.0.

• The project looks moderately BCR-plausible, even with uncertainty in L.
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2.5 Monetizing Human Life with Uncertain L and ib

§ Continue section 2.3, p.6, with uncertain L and ib. Assume that ib is constant but uncertain:

U(h) =
{
L, ib :

∣∣∣∣∣L− L̃

sL

∣∣∣∣∣ ≤ h, ib > −1,

∣∣∣∣∣ ib − ĩb
si

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (33)

• Require: BCR(L, ib) ≥ BCRc.

• Robustness:

ĥ(BCRc) = max

{
h :

(
min

L,ib∈U(h)
BCR(L, ib)

)
≥ BCRc

}
(34)

• From eq.(23), p.6, inner minimum, m(h), occurs at:

◦ L = L̃− sLh.

◦ ib = ĩb + sih (Why? See eq.(22), p.6.) if L̃− sLh ≥ 0 (Why?) or h ≤ L̃/sL.

m(h) =
K
∑N

n=1(1 + ĩb + sih)
−n

S + C
∑N

n=1(1 + ic)−n
(L̃− sLh) (35)

=
K 1−(1+̃ib+sih)

−N

ĩb+sih

S + C 1−(1+ic)−N

ic

(L̃− sLh) (36)

=
Kδf (̃ib + sih)

S + Cδf (ic)
(L̃− sLh) for h ≤ L̃/sL (37)

• m(h) is the inverse of the robustness:

m(h) = BCRc ⇐⇒ ĥ(BCRc) = h (38)

• See fig. 4 with numerical values from section 2.3, p.6,

and sL = 0.3L̃ =$15,000 and si = 0.3̃ib = 0.03.

• Moderate robustness at moderate BCRc, fig. 4:

◦ ĥ(BCRc = 1) = 2.3.

◦ ĥ(BCRc = 2) = 1.5.

• The project still looks BCR-plausible, even with uncertainty in L and ib.

◦ Only slightly less robust than section 2.4, fig. 3. Intercepts are the same:

Horizontal intercept at BCRc = BCR(L̃, ĩb) = 5.1041.

Vertical intercept at h = L̃/sL = 1/0.3 = 3.33.
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Figure 3: Robustness curve,
eq.(32), with parameter
values of section 2.3 and
sL = 0.3L̃ =$15,000. Same
as fig. 2, p.7.

Figure 4: Robustness curve,
eq.(37), with parameter val-
ues of section 2.3 and sL =
0.3L̃ =$15,000 and si =
0.3̃ib = 0.03.

§ Compare figs. 3 and 4:

• Same horizontal intercepts. Why? (Same predicted BCR).

• Same vertical intercepts. Why?

Compare the inverse robustness functions, eqs.(29) (uncertain L) and (37) (uncertain L and ib):

m(h) =
Kδf (ib)

S + Cδf (ic)︸ ︷︷ ︸
Q=BCR(L̃)/L̃

(L̃− sLh) (39)

m(h) =
Kδf (̃ib + sih)

S + Cδf (ic)
(L̃− sLh) for h ≤ L̃/sL (40)

◦ The function δf (̃ib+ sih) decreases as h increases, but never reached zero. See eqs.(23)–(26),

p.6.

◦ Thus L, value in $ of a human life, is the dominant uncertainty as h approaches L̃
sL .

• Robustness in fig. 4 less than robustness in fig. 3 for all intermediate BCRc values. Why?

• Robustness in fig. 4 is only slightly less than in fig. 3. What does this mean?
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2.6 Monetizing Human Life with Uncertain L, ib, K and C

§ Continue with BCR from eq.(22), p.6.

§ Continue section 2.3, p.6, with uncertain L, ib, K and C, where ib is constant but uncertain:

U(h) =
{
L, ib,K,C :

∣∣∣∣∣L− L̃

sL

∣∣∣∣∣ ≤ h, ib > −1,

∣∣∣∣∣ ib − ĩb
si

∣∣∣∣∣ ≤ h,

∣∣∣∣∣K − K̃

sK

∣∣∣∣∣ ≤ h,

∣∣∣∣∣C − C̃

sC

∣∣∣∣∣ ≤ h,

}
, h ≥ 0

(41)

• Require: BCR(L, ib,K,C) ≥ BCRc.

• Robustness:

ĥ(BCRc) = max

{
h :

(
min

L,ib,K,C∈U(h)
BCR(L, ib,K,C)

)
≥ BCRc

}
(42)

• From eq.(23), p.6, inner minimum, m(h), for h ≤ min(L̃/sL, K̃/sK), occurs at:

◦ L = L̃− sLh. K = K̃ − sKh. C = C̃ + sCh.

◦ ib = ĩb + sih.

m(h) =

∑N
n=1(1 + ĩb + sih)

−n

S + ( C̃ + sCh)
∑N

n=1(1 + ic)−n
(L̃− sLh)( K̃ − sKh) (43)

=

1−(1+̃ib+sih)
−N

ĩb+sih

S + ( C̃ + sCh)
1−(1+ic)−N

ic

(L̃− sLh)( K̃ − sKh) (44)

=
δf (̃ib + sih)

S + ( C̃ + sCh)δf (ic)
(L̃− sLh)( K̃ − sKh) for h ≤ min(L̃/sL, K̃/sK) (45)

• m(h) is the inverse of the robustness:

m(h) = BCRc =⇒ ĥ(BCRc) = h (46)

• See fig. 7 with numerical values from section 2.3, p.6,

and sL = 0.3L̃ =$15,000, si = 0.1̃ib = 0.03, sK = 0.3 K̃ =30, sC = 0.1 C̃ =$50,000.

• Low robustness at moderate BCRc, fig 7:

◦ ĥ(BCRc = 1) = 1.5.

◦ ĥ(BCRc = 2) = 0.91.

• The project looks barely BCR-plausible with uncertainty in L, ib, K and C.

◦ Less robust than section 2.4 (fig 5) or section 2.5 (fig 6). Intercepts are the same:

Horizontal intercept at BCRc = BCR(L̃, ĩb) = 5.1041.

Vertical intercept at h = min(L̃/sL, K̃/sK) = 1/0.3 = 3.33.
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Figure 5: Robustness curve,
eq.(32), with parameter val-
ues of section 2.3 and sL =
0.3L̃ =$15,000. Same as
fig. 2, p.7.

Figure 6: Robustness curve,
eq.(37), with parameter val-
ues of section 2.3 and sL =
0.3L̃ =$15,000 and si =
0.3̃ib = 0.03. Same as fig. 4,
p.10.

Figure 7: Robustness curve,
eq.(45), with parameter val-
ues of section 2.3 and sL =
0.3L̃ =$15,000, si = 0.1̃ib =
0.03, sK = 0.1 K̃ = 30, sC =
0.1 C̃ =$50,000.
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2.7 Constant But Uncertain Interest Rates ib and ic

§ Continue section 2.3, p.6, with constant but uncertain interest rates.

• BCR of eq.(5), p.4, with constant B and C:

BCR =
B
∑N

n=1(1 + ib)
−n

S + C
∑N

n=1(1 + ic)−n
(47)

=
B 1−(1+ib)

−N

ib

S + C 1−(1+ic)−N

ic

(48)

=
Bδf (ib)

S + Cδf (ic)
, δf (i) defined in eq.(26), p.6 (49)

• Interest rate for benefits, ib, highly uncertain. Diverse criteria for choosing ib:
5

◦ Opportunity cost to government.

◦ Opportunity cost to tax payers.

◦ Subjective discount rate on future population growth or technological development.

• Interest rate for costs, ic, uncertain:

◦ Future cost of money uncertain.

◦ Future financing opportunities uncertain.

• Numerical values:

◦ B =$5,000,000.

◦ C =$500,000.

◦ S =$1,000,000.

◦ N = 40 years.

• BCR increases as ib decreases (Why?), strongly for ib < 0.1, fig. 8.

◦ Small ib implies future benefits are nearly as important as present benefits.

◦ Large ib ignores (discounts) the future.

◦ Implication of fig. 8:

including future benefits (small ib) makes the present more attractive (large BCR).

• BCR increases as ic increases (Why different from ib?), fig. 9.

◦ Large ic ignores (discounts) future costs.

◦ Small ic implies future costs are nearly as important as present costs.

◦ Implication of fig. 9:

ignoring future costs (large ic) makes the present more attractive (large BCR).

5DeGarmo et al., p.246.
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Figure 8: BCR, eq.(49), and
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Figure 9: BCR, eq.(49), and
δf (ib) vs ib, with 4 ic’s.
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2.8 Benefits, Dis-Benefits and Conflicting Interests

• Benefits and dis-benefits:

◦ Increased stiffness of a beam by adding ribs also increases the weight.

Enhancing the reliability may reduce the allowable payload.

The reliability engineer’s benefits are the flight engineer’s dis-benefits.

◦ Highways sometimes disturb habitats and damage ecologies.

The motorists’ benefits are the naturalists’ dis-benefits.

◦ Increased product life delays the opportunity for up-grade.

The planner’s benefit is the innovator’s dis-benefit.

• Present worth of benefits, Bn, and dis-benefits, Dn, adapting from eq.(3), p.4:

Bpw =
N∑

n=1

(1 + ib)
−n(Bn −Dn) (50)

• BCR, from eqs.(2), (4) and (50):

BCR =
Bpw

Cpw
(51)

=

∑N
n=1(1 + ib)

−n(Bn −Dn)

S +
∑N

n=1(1 + ic)−nCn

(52)

Special case: Bn, Dn and Cn are constant, so eq.(52) is:

BCR =
(B −D)

∑N
n=1(1 + ib)

−n

S + C
∑N

n=1(1 + ic)−n
(53)

=
(B −D)1−(1+ib)

−N

ib

S + C 1−(1+ic)−N

ic

(54)

=
(B −D)δf (ib)

S + Cδf (ic)
, δf (i) defined in eq.(26), p.6 (55)

• Uncertain dis-benefits:

U(h) =
{
D :

∣∣∣∣∣D − D̃

sD

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (56)

• Robustness for requirement BCR(D) ≥ BCRc:

ĥ(BCRc) = max

{
h :

(
min

D∈U(h)
BCR(D)

)
≥ BCRc

}
(57)

• Inner minimum, m(h), occurs at D = D̃ + sDh:

m(h) =
(B − D̃ − sDh)δf (ib)

S + Cδf (ic)
(58)

= BCR(D̃)− sDδf (ib)

S + Cδf (ic)
h (59)

• Equate eq.(59) to BCRc and solve for h to find robustness:

BCR(D̃)− sDδf (ib)

S + Cδf (ic)
h = BCRc =⇒ ĥ(BCRc) =

(BCR(D̃)−BCRc)(S + Cδf (ic))

sDδf (ib)
(60)
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• Compare different combinations of D and ib:

◦ Large D (bad) with small ib (good), vs small D (good) and large ib (bad).

◦ Which to prefer? This is a dilemma.

• Values of B,C, S and N from section 2.7, p.13, with ic = 0.05, sD = 0.3D̃. Fig. 10.

• Horizontal intercepts (zeroing) in fig. 10, p.16:

◦ BCR(D̃ = $2M, ib = 0.1) = 3.06 > 2.43 = BCR(D̃ = $1.5M, ib = 0.15):

◦ In this case, lower discounting (ib = 0.1) nominally outweighs larger dis-benefit (D̃ =$2M).

• Cost of robustness (slopes):

◦ slope(D̃ = $2M, ib = 0.1) = −1.63 > −3.21 = slope(D̃ = $1.5M, ib = 0.15).

◦ Lower cost of robustness with D̃ = $1.5M due to lower uncertainty: sD ∝ D̃.

• Preference reversal: trade off between dis-benefit and discounting depends on BCRc.
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Figure 10: Robustness curve, eq.(60).
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3 Using the BCR with
Incommensurate Benefits and Costs

3.1 Robotic Position Accuracy

• Robotic arm with positional accuracy d [mm].

• Small d better than large d: number of available tasks increases as d decreases, table 1.

• Small d is more expensive than large d, table 1.

d [mm] # tasks eq.(61) Price ($105) eq.(62)

1 50 50.0 10 10
2 25 25.0 5 5.0
3 12 12.5 3.4 3.3
4 6 6.25 2.5 2.5

Table 1: Data for section 3.1.

◦ Benefit function, B(d), col. 3, table 1:

B(d) = B0e
−λd, B0 = 100 [# of tasks], λ = 0.693 (61)

◦ Price function, S(d), col. 5, table 1:

S(d) = S0/d, S0 = $106 (62)

• C(d) = maintenance cost at end of each year = εS(d). We will use ε = 0.15.

• N = life of robot = 5 years.

• ic = interest rate or MARR = 0.05.

• The task: specify positional accuracy that’s worth the money.

• PW of initial cost and maintenance, eq.(2), p.4:

Cpw(d) = S(d) +
N∑

n=1

(1 + ic)
−nC(d) (63)

= S(d)

(
1 + ε

N∑
n=1

(1 + ic)
−n

)
(64)

= S(d)

(
1 + ε

1− (1 + ic)
−N

ic

)
(65)

= S(d) (1 + εδf (ic)) (66)

δf (ic) = 4.33 so 1 + εδf (ic) = 1.65 so Cpw(d) = 1.65S(d).

• The problem, fig. 11, p.18:

◦ Benefit improves (B(d) rises) and cost rises Cpw(d) as accuracy improves (d falls).

◦ The usual calculation of worth is B − C, but this is now dimensionally inconsistent.
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• The solution: consider benefit per dollar, the BCR in units [# of tasks/$]:

BCR(d) =
B(d)

Cpw(d)
(67)

=
B(d)

S(d)(1 + εδf (ic))
(68)

=
B0e

−λd

S0/d

1

1 + εδf (ic)
(69)

=
B0de

−λd

S0

1

1 + εδf (ic)
(70)

• Using the BCR, fig. 12, p.18:

◦ BCR(d) maximal and fairly constant for 1 ≤ d ≤ 2 [mm].

Range of best economic efficiency.

◦ BCR(d) falls as d goes: 1 7→ 0.

Range of diminishing economic efficiency.

◦ BCR(d) falls as d goes: 2 7→ 4.

Range of diminishing economic efficiency.
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Figure 11: Benefit and initial cost vs po-
sitional accuracy.

Figure 12: BCR vs positional accuracy, d,
eq.(70), with benefit and initial cost functions.

• Note: Economic efficiency isn’t everything.

If you need spatial accuracy of, say, 0.3 mm,

or if you need great versatility, B(0.3) = 81 tasks,

then you need d = 3 mm despite the economic inefficiency.
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3.2 Robotic Position Accuracy: Comparing 3 Designs

• Continue section 3.1, p.17.

• Compare three different designs, table 2, eqs.(71)–(76) and figs. 13 and 14, p.19.

d [mm] B1(d) S1(d) ($10
5) B2(d) S2(d) ($10

5) B3(d) S3(d) ($10
5)

1 50 10 34 9 67 9
2 25 5 26 7 45 7
3 12.5 3.4 18 5 23 5
4 6.25 2.5 10 3 1 3

Table 2: Data for section 3.2.

Design 1: B1(d) = B0e
−λd, B0 = 100 [# of tasks], λ = 0.693 (71)

S1(d) = S0/d, S0 = $106 (72)

Design 2: B2(d) = −m2d+ g2, m2 = −8, g2 = 42 (73)

S2(d) = −a2d+ b2, a2 = −2, b2 = 1 (74)

Design 3: B3(d) = −m3d+ g3, m3 = −22, g3 = 89 (75)

S2(d) = −a3d+ b3, a3 = a2 = −2, b3 = b2 = 1 (76)

• Design 1: Same as section 3.1, p.17.

◦ Good accuracy at low d, fig. 13.

◦ High cost at low d, fig. 14.

• Design 2:

◦ Better accuracy than Design 1 at large d. Worse accuracy than Design 1 at small d.

◦ Higher cost than Design 1 at large d. Lower cost than Design 1 at small d.

• Design 3:

◦ Better accuracy than Design 1 at d ≤ 3.

◦ Higher cost than Design 1 at large d. Lower cost than Design 1 at small d.

• BCRj for design j, from eq.(68), p.18:

BCRj(d) =
Bj(d)

Sj(d)(1 + εδf (ic))
(77)

• BCR, fig. 15:

◦ Design 3: Best economic efficiency (BCR) for d < 3.3.

◦ Design 3: Worst economic efficiency (BCR) for d > 3.3.

◦ Design 2: Best economic efficiency (BCR) for d > 3.3.
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Figure 13: Benefit functions. Figure 14: Initial cost func-
tions.

Figure 15: BCR vs posi-
tional accuracy, d, eq.(77),
with 3 benefit and initial cost
functions.
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3.3 Robotic Position Accuracy with Uncertain Benefit

• Return to section 3.1, p.17 and consider uncertain B(d).

• The BCR, eq.(68), p.18, is:

BCR =
B(d)

S(d)(1 + εδf (ic))
(78)

ic = 0.05, N = 5, ε = 0.15, 1 + εδf (ic) = 1.65. From eq.(62):

S(d) = S0/d, S0 = $106 (79)

and, from eq.(61), our uncertain estimate of the benefit function is:

B̃(d) = B0e
−λd, B0 = 100 [# of tasks], λ = 0.693 (80)

• However, we don’t know how much B̃(d) errs, so we use a fractional-error info-gap model:

U(h) =
{
B(d) :

∣∣∣∣∣B(d)− B̃(d)

B̃(d)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (81)

• We require that the BCR be no less than a critical value, BCRc:

BCR(B, d) ≥ BCRc (82)

• The robustness is the greatest tolerable horizon of uncertainty:

ĥ(BCRc, d) = max

{
h :

(
min

B∈U(h)
BCR(B, d)

)
≥ BCRc

}
(83)

• The inner minimum, m(h), occurs when B(d) is as small as possible:

m(h) =
(1− h)B̃(d)

S(d)(1 + εδf (ic))
(84)

= (1− h)BCR(B̃, d) (85)

• Equate m(h) to BCRc and solve for h:

(1− h)BCR(B̃, d) = BCRc =⇒ (86)

ĥ(BCRc, d) = 1− BCRc

BCR(B̃, d)
(87)

= 1− S0e
λd

B0d
(1 + εδf (ic))BCRc (88)

or zero if this is negative.
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• Robustness vs critical BCR, fig. 16, for 3 different positional accuracies d:

◦ Zeroing: ĥ(BCRc) = 0 at BCRc = BCR(B̃) = value in fig. 12, p.18.

This determines the order of the curves.

◦ Trade off: robustness vs critical BCR that can be achieved. E.g., for d = 1.3 (solid curve):

ĥ(BCRc = 16 tasks/$106, d = 1.3) = 0.5.

• Robustness vs positional accuracy, fig. 17, for 3 critical BCRs.

◦ d = 1.4 [mm] is most robust positional accuracy.

◦ 30 tasks/$106: very low robustness; probably infeasible.

◦ 10 or 20 tasks/$106: low/modest robustness at d = 1.4 [mm]; may be feasible.
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Figure 16: Robustness vs
critical # of tasks, eq.(88), for
3 positional accuracies d.

Figure 17: Robustness vs
positional accuracy, eq.(88),
for 3 BCRc’s.
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3.4 Discounting Future Non-Monetary Benefit: Sorties of a Drone

• Question:

◦ We know how to discount the future value of money: time value of money.

◦ How to discount the future value of non-monetary benefit?

• Consider an intelligence-gathering drone:

◦ N = life = 5 [years].

◦ Bn = benefit in year n, E.g. = number of sorties in nth year = 100.

◦ Cn = maintenance cost at end of nth year = $2,000.

◦ S = initial cost of drone = $10,000.

• PW of investment and maintenance, eq.(2), p.4:

Cpw = S +
N∑

n=1

(1 + ic)
−nCn (89)

ic = interest rate = 0.05.

• Discounting the future:

◦ ib = discount rate, expressing reduced importance of future benefit (e.g. sorties) due to:

— Alternative future intelligence-gathering methods.

— Less dangerous security environment, reducing need for drones.

— More concealed security threats, reducing utility of drones.

◦ We will use ib = 0.15.

◦ ib may be quite uncertain, due to uncertain future technology or security environment.

◦ We will info-gap ib in section 3.5, p. 25.

• PW of benefits, eq.(3), p.4:

Bpw =
N∑

n=1

(1 + ib)
−nBn (90)

◦ Note: Single benefit, Bn, in each period. This is a simplification.

◦ However, there can be different benefits, of different importance, over time:

Tactical, strategic or political intelligence; etc.

• BCR, eqs.(4) and (5), p.4:

BCR =
Bpw

Cpw
(91)

=

∑N
n=1(1 + ib)

−nBn

S +
∑N

n=1(1 + ic)−nCn

(92)

• If:

B = Bn, C = Cn (93)

then:

BCR =

1−(1+ib)
−N

ib
B

S + 1−(1+ic)−N

ic
C

(94)

=
δf (ib)B

S + δf (ic)C
(95)

• With eq.(95), and for ic = 0.05, ib = 0.15, etc., we find:

δf (ib) = 3.3522, δf (ic) = 4.3295, BCR = 0.0180 [sorties/$] (96)
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◦ One time-discounted sortie costs 1/BCR = 1/0.0180 = $55.56/sortie.

◦ BCR increases linearly as B (# of sorties/year) increases, eq.(95), fig. 18, p.23.

◦ BCR decreases non-linearly as ib (discount rate for future benefit) increases, fig. 19, p.23.

◦ Both B and ib are uncertain.
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Figure 18: BCR vs # of sor-
ties/year, eq.(88). ib = 0.15.

Figure 19: BCR vs benefit
discount rate, eq.(88). B =
100.

• Compare eq.(96) with shorter duration and proportionately lower initial investment:

◦ N = life = 2 [years].

◦ Bn = benefit in year n, E.g. = number of sorties in nth year = 100.

◦ Cn = maintenance cost at end of nth year = $2,000.

◦ S = initial cost of drone = $4,000.

◦ ib = 0.15, ic = 0.05.

◦ With eq.(95) we find:

δf (ib) = 1.6257, δf (ic) = 1.8594, BCR = 0.0211 [sorties/$] (97)

◦ One time-discounted sortie costs 1/BCR = 1/0.0211 = $47.48/sortie.

◦ This is lower (better) cost/sortie than eq.(96), $55.56/sortie, because

the higher cost at N = 5 is spread over discounted (lower) benefits.

◦ This raises the idea of discounted fair price: An initial cost function S(N) for which

BCR(N) is constant and equals BCRref , a constant given reference value.

For each N , solve this relation for S(N), using also eq.(95), p.22:

BCRref = BCR(N,S(N)) (98)

=
δf (ib, N)B

S(N) + δf (ic, N)C
(99)

Thus, Fig. 20, p.24:

S(N) =
δf (ib, N)B

BCRref
− δf (ic, N)C (100)

Better (larger) BCRref requires better (lower) S(N).

Positive solution exists for any BCRref such that the RHS of eq.(100) is positive:

BCRref <
δf (ib, N)B

δf (ic, N)C
(101)

Reducing ib or increasing ic enables larger BCRref :

Reducing ib increases discounted future benefits (because δf (ib, N) increases).

Increasing ic decreases discounted future costs (because δf (ic, N) decreases).

The discounted fair price, eq.(100), fig. 20, with BCRref = 0.02:
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Rises at low N because δf (ib) and δf (ic) rise at nearly the same rate.

Falls at high N because δf (ic) rises faster than δf (ib).

• Compare eq.(95) with no discounting of future benefits, ib = 0:

◦ δf (ib = 0) = N = 5.

◦ Thus:

BCR(ib = 0) =
5

3.3522
BCR(ib = 0.15) = 1.4916× BCR(ib = 0.15) = 0.0268 (102)

◦ Thus one undiscounted sortie-benefit costs 1/BCR = 1/.0268 = $37.25 < $55.56.

◦ The undiscounted sortie-benefit costs less because Cpw is distributed over more benefit.

0 5 10 15 20
0

2

4

6

8

10

12

δf (ib)

δf (ic)

S/$1000

N

Figure 20: Discounted fair price and dis-
count factors vs N . BCRref = 0.02.



benefit-cost02.tex The Benefit-Cost Ratio 25

3.5 Uncertain Discounting of Future Non-Monetary Benefit:
Sorties of a Drone

• Continue section 3.4, p.22, and consider uncertain ib and B (both constant over time):

U(h) =
{
ib, B : ib > −1,

∣∣∣∣∣ ib − ĩb
si

∣∣∣∣∣ ≤ h,

∣∣∣∣∣B − B̃

sB

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (103)

Questions: How to interpret si and sB? How to formulate IGM if that information is lacking?

• Require:

BCR(ib, B) ≥ BCRc (104)

for BCR(ib, B) from eq.(94), p.22.

• Robustness:

ĥ(BCRc) = max

{
h :

(
min

ib,B∈U(h)
BCR(ib, B)

)
≥ BCRc

}
(105)

• Inner minimum, m(h), occurs at ib = ĩb + sih and B = B̃ − sbh:

m(h) =

1−(1+̃ib+sih)
−N

ĩb+sih
(B̃ − sBh)

S + 1−(1+ic)−N

ic
C

(106)

Question: How to understand the “+” in ib = ĩb + sih and the “−” in B = B̃ − sbh?

Why do they differ?

• Robustness curve in fig. 21, p.25.

◦ Zeroing: ĥ(BCRc) = 0 at BCRc = 0.018 = BCR(̃ib, B̃), eq.(96), p.22.

◦ Trade off: robustness rises as BCRc falls.

— ĥ(BCRc = 0.01) = 2. Reasonable or moderate robustness (Why? When not?).

— BCR = 0.01 implies 1/.01 = $100/sortie.

— Compare nominal, eq.(96), p.22: 1/0.018 = $55.56/sortie.

— Is $55.56/sortie a fair or realistic price?

$55.56/sortie ≡ 0.0180 sorties/$ for which ĥ = 0. Unreliable. Due to zeroing.
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Figure 21: Robustness vs BCRc, eq.(106).
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3.6 Probabilistic Uncertainty of Non-Monetary Benefit:
Sorties of a Drone

• Continue section 3.4 with random benefit, B in eq.(95), p.22, B ∼ N (µ, σ2).

Question: What’s wrong with normal pdf for B?

Question: How might we know that this is the pdf?

◦ Theory: central limit theorem: sum of many iid events. (Not too plausible.)

◦ Past experience, and assuming the future is similar. (Sometimes plausible.)

◦ We focus on deep uncertainty, so pdf’s typically unavailable or uncertain.

• The BCR, eqs.(94) and (95) p.22, is:

BCR =

1−(1+ib)
−N

ib
B

S + 1−(1+ic)−N

ic
C

(107)

=
δf (ib)

S + δf (ic)C︸ ︷︷ ︸
Q

B, δf (i) defined in eq.(26), p.6 (108)

• The probability of failure is:

Pf = Prob(BCR ≤ BCRc) = Prob(QB ≤ BCRc) = Prob

(
B ≤ BCRc

Q

)
(109)

= Prob

(
B − µ

σ︸ ︷︷ ︸
z∼N (0,1)

≤
BCRc

Q − µ

σ

)
(110)

= Φ

(
BCRc −Qµ

Qσ

)
(111)

• Note that, because B ∼ N (µ, σ2) and BCR = QB:

BCR ∼ N (Qµ,Q2σ2) (112)

Thus, when evaluating the probability of failure, we are usually interested in the case:

BCRc < Qµ (113)

Hence, assuming eq.(113) (see fig. 22):

∂Pf

∂µ
≤ 0 because

BCRc −Qµ

Qσ
gets more negative as µ increases (114)

∂Pf

∂σ
≥ 0 because

BCRc −Qµ

Qσ
gets less negative as σ increases (115)

Eq.(114): Increased mean benefit, µ, causes reduced Pf , fig. 22, left.

Eq.(115): Increased variance of benefit, σ2, causes increased Pf , fig. 22, right.

Figure 22: Probability distributions for various means and variances.
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• Eq.(111) can be re-written:

Pf = Φ

(
BCRc

Qσ
− µ

σ

)
(116)

Hence:

∂Pf

∂ib
≥ 0 because δf (ib) ↓ as ib ↑ soQ ↓ so

BCRc

Qσ
− µ

σ
gets less negative (117)

∂Pf

∂ic
≤ 0 because δf (ic) ↓ as ic ↑ soQ ↑ so

BCRc

Qσ
− µ

σ
gets more negative (118)

Eq.(117): increased discounting of benefits causes increased Pf by decreasing net benefit.

Eq.(118): increased discounting of cost causes decreased Pf by decreasing net cost.
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3.7 Info-Gap Uncertain PDF of Non-Monetary Benefit: Sorties of a Drone

• Continue section 3.6, p.26, but with uncertain p(B).

• Nominal estimate: p̃(B) ∼ N (µ, σ2). Fractional-error info-gap model for functional uncertainty:

U(h) =
{
p(B) : p(B) ≥ 0,

∫ ∞

−∞
p(B) dB = 1,

∣∣∣∣p(B)− p̃(B)

p̃(B)

∣∣∣∣ ≤ h

}
, h ≥ 0 (119)

• Note: eq.(119) is a modest info-gap model because uncertainty decays strongly on the tails.

• An info-gap model with greater uncertainty is:

U(h) =
{
p(B) : p(B) ≥ 0,

∫ ∞

−∞
p(B) dB = 1,

∣∣∣∣p(B)− p̃(B)

w

∣∣∣∣ ≤ h

}
, h ≥ 0 (120)

w = constant, e.g. w = maxB p̃(B). Large uncertainty on the tails.

• Probability of failure, from eq.(109), p.26:

Pf(p) =

∫ BCRc/Q

−∞
p(B) dB (121)

• Performance requirement:

Pf(p) ≤ Pc (122)

• Robustness:

ĥ(Pc) = max

{
h :

(
max
p∈U(h)

Pf(p)

)
≤ Pc

}
(123)

• Simplifying assumption (to make normalization easy), fig. 23:

BCRc ≪ Qµ (124)

Figure 23: Eq.(124) implies low failure probability.

• Now the inner max in eq.(123), denoted m(h), occurs at p(B) = (1 + h)p̃(B) for B ≤ BCRc
Q :

m(h) = (1 + h)

∫ BCRc/Q

−∞
p̃(B) dB = (1 + h)Pf(p̃) (125)

• Equate this to Pc and solve for h:

(1 + h)Pf(p̃) = Pc =⇒ ĥ(Pc) =
Pc

Pf(p̃)
− 1 (126)

◦ Zeroing: ĥ(Pc) = 0 at Pc = Pf(p̃).

◦ Trade off: robustness increases as Pc increases.

• Robustness variation: analog to variation of Pf .

◦ From eqs.(114), (115), p.26, and eq.(126):

∂ĥ

∂µ
≥ 0 (127)

∂ĥ

∂σ
≤ 0 (128)
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Eq.(127): Increased estimated mean benefit, µ, causes increased robustness, ĥ.

Eq.(128): Increased estimated variance of benefit, σ2, causes decreased robustness, ĥ.

◦ From eqs.(117), (118), p.27, and eq.(126):

∂ĥ

∂ib
≤ 0 (129)

∂ĥ

∂ic
≥ 0 (130)

Eq.(127): Increased discounting of benefits, ib, causes decreased robustness, ĥ.

Eq.(128): Increased discounting of costs, ic, causes increased robustness, ĥ.

• Compare eqs.(114) and (115) with eqs.(127) and (128):

∂Pf

∂µ
≤ 0,

∂Pf

∂σ
≥ 0,

∂ĥ

∂µ
≥ 0,

∂ĥ

∂σ
≤ 0 (131)

◦ Pf and ĥ respond in the same ways to change in µ or σ.

◦ Suggests that robustness could be a proxy for probability.6

• Compare eqs.(117) and (118) with eqs.(129) and (130):

∂Pf

∂ib
≥ 0,

∂Pf

∂ic
≤ 0,

∂ĥ

∂ib
≤ 0,

∂ĥ

∂ic
≥ 0 (132)

◦ Pf and ĥ respond in the same ways to change in ib or ic.

◦ Suggests that robustness could be a proxy for probability.

6Yakov Ben-Haim, 2011, When is non-probabilistic robustness a good probabilistic bet? Working paper.
Yakov Ben-Haim, 2014, Robust satisficing and the probability of survival, Intl. J. of System Science, 45: 3-19.
Links to pre-prints of both articles here: https://info-gap.technion.ac.il/engineering-analysis-and-design/


