Lecture Notes on

Forecasting

Yakov Ben-Haim Former Yitzhak Moda'i Chair in Technology and Economics

Faculty of Mechanical Engineering

Technion — Israel Institute of Technology Haifa 32000 Israel yakov@technion.ac.il

http://info-gap.com http://www.technion.ac.il/yakov

Source material:¹

- Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Chapter 6: Estimation and Forecasting, Palgrave-Macmillan.
- Yakov Ben-Haim, 2009, Info-gap forecasting and the advantage of sub-optimal models, *European Journal of Operational Research*, 197: 203–213. Link to pre-print at: http://info-gap.com/content.php?id=22

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1	1-D	Dynamic System: European Central Bank Overnight Interest Rates	2
	1.1	The Data and the Questions	2
	1.2	1-Step Dynamics and Robustness	3
	1.3	Multi-Step Dynamics and Robustness	Ę
2	Reg	ression Prediction of US Inflation Data	8
	2.1	Data	8
	2.2	System Model: Mean Squared Error	G
	2.3	Uncertainty Model	Ĉ
	2.4	Robustness: Formulation and Derivation	10
	2.5	Robustness: Results	11
3	Aut	o-Regression and Data Revision	13
	3.1	The Problem of Data Revision	13
	3.2	Autoregression	13
	3.3	Uncertainty Model and Robustness Function	15
	3.4	Policy Exploration	15
		3.4.1 Symmetric Uncertainty	
		3.4.2 Asymmetric Uncertainty	16

⁰\lectures\Econ-Dec-Mak\forecasting001.tex 2.7.2022 © Yakov Ben-Haim 2023.

¹Additional material in the file: Yakov Ben-Haim, Lecture notes on info-gap estimation and forecasting, \lectures\risk\lectures\estim02.pdf.

forecasting001.tex FORECASTING 2

1 1-D Dynamic System:European Central Bank Overnight Interest Rates

1.1 The Data and the Questions

Date	Interest	Implied
	rate	λ
1 Jan 1999	4.50	
9 Apr 1999	3.50	0.778
5 Nov 1999	4.00	1.143
4 Feb 2000	4.25	1.063
17 Mar 2000	4.50	1.059
28 Apr 2000	4.75	1.056
9 Jun 2000	5.25	1.105
28 Jun 2000	5.25	1.000
1 Sep 2000	5.50	1.048
6 Oct 2000	5.75	1.045
11 May 2001	5.50	0.957
31 Aug 2001	5.25	0.955

Table 1: Interest rates for overnight loans at the European Central Bank (marginal lending facility). Source: http://www.ecb.int/stats/monetary/rates/html/index.en.html

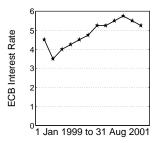


Figure 1: ECB Interest Rates

§ ECB overnight interest rates: table 1.

• First loans: 1999.

• Data through August 2001.

• 9 June 2000–31 August 2001: $\mu = 5.4\%, \ \sigma = 0.19\%.$

• Typical change: 25 basis points.

• Largest change: 100 basis points.

§ El-Qaeda attacks in US: 11 Sept 2001.

- Predict next interest rate on 9/12/2001, (1 day after 9/11).
- Asymmetric uncertainty: rate will go down (Why?), but by how much?

§ Questions:

- How to forecast the rate in light of the great uncertainty?
- How to assess confidence in the forecast?

1.2 1-Step Dynamics and Robustness

§ Uncertain historical model of dynamical variable y_n , e.g. interest rate:

$$y_1 = \lambda_1 y_0, \quad y_0 > 0, \text{ known}, \quad \lambda_1 \text{ uncertain}$$
 (1)

§ Info-gap model. Asymmetric uncertainty:

$$\mathcal{U}(h,\widetilde{\lambda}) = \left\{ \lambda_1 : (1-h)\widetilde{\lambda} \le \lambda_1 \le \widetilde{\lambda} \right\}, \quad h \ge 0$$
 (2)

- $\tilde{\lambda}$: known and positive estimate transition coefficient.
- λ_1 : unknown true transition coefficient anticipated to be no greater, probably less, than $\tilde{\lambda}$.
- § Slope-adjusted forecasting model. We must choose the "slope" ℓ :

$$y_1^s = \ell y_0 \tag{3}$$

- § Performance requirement:
 - Absolute error:

$$\varepsilon = |y_1^s - y_1| = |(\ell - \lambda_1)y_0| \tag{4}$$

• Performance requirement:

$$\varepsilon \le \varepsilon_{\rm c}$$
 (5)

- § Robustness:
 - Definition:

$$\widehat{h}(\ell, \varepsilon_{c}) = \max \left\{ h : \left(\max_{\lambda_{1} \in \mathcal{U}(h)} \varepsilon(\lambda_{1}) \right) \leq \varepsilon_{c} \right\}$$
(6)

- m(h) is inner maximum in eq.(6): inverse of $h(\varepsilon_c)$.
- We will consider a special case:

$$\ell \le \widetilde{\lambda} \tag{7}$$

- Recall: $y_0 > 0$ and known.
- m(h) occurs for an extremal value of λ_1 at horizon of uncertainty h: either $\widetilde{\lambda}$ or $(1-h)\widetilde{\lambda}$.
- m(h) is the greater of the following:

$$m_1(h) = \left| \widetilde{\lambda} - \ell \right| y_0 \tag{8}$$

$$m_2(h) = \left| \ell - (1-h)\widetilde{\lambda} \right| y_0 \tag{9}$$

• Clearly $m_1(h) > m_2(h)$ for small h because $\ell \leq \tilde{\lambda}$. To find the transition:

$$\widetilde{\lambda} - \ell \ge \ell - (1 - h)\widetilde{\lambda}$$
 (10)

$$\iff 2\left(\widetilde{\lambda} - \ell\right) \geq h\widetilde{\lambda} \tag{11}$$

$$\iff h \leq \frac{2\left(\widetilde{\lambda} - \ell\right)}{\widetilde{\lambda}} \tag{12}$$

• Hence:

$$m(h) = \begin{cases} \left(\tilde{\lambda} - \ell\right) y_0, & \text{if } h \leq \frac{2\left(\tilde{\lambda} - \ell\right)}{\tilde{\lambda}} \\ \left(\ell - (1 - h)\tilde{\lambda}\right) y_0, & \text{else} \end{cases}$$
(13)

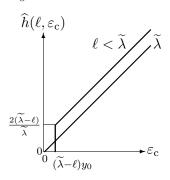


Figure 2: Robustness curve $\hat{h}(\ell, \varepsilon_c)$, eq.(14).

§ Robustness function: equate m(h) to ε_c and solve for h to find the robustness. One finds (fig. 2):

$$\hat{h}(\ell, \varepsilon_{c}) = \begin{cases}
0, & \text{if } \varepsilon_{c} < (\tilde{\lambda} - \ell) y_{0} \\
\frac{\varepsilon_{c} + (\tilde{\lambda} - \ell) y_{0}}{\tilde{\lambda} y_{0}}, & \text{else}
\end{cases}$$
(14)

- Trade off: robustness \hat{h} up (good) as critical error ε_c up (not good).
- Zeroing: No robustness at estimated error.
- Discontinuous robustness curve for $\ell < \lambda$.
- Crossing robustness curves, fig. 3: preference reversal.

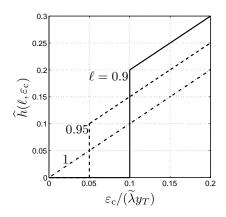


Figure 3: Robustness vs normalized forecast error. $\tilde{\lambda} = 1, y_T = 5.25.$

§ Robustness curves for 3 slope-adjusted models, fig. 3:

- $\ell = 1.0 \Longrightarrow 0\%$ robustness at 0% error.
- $\ell = 0.95 \Longrightarrow 10\%$ robustness at 5% error (more robust than $\ell = 1.0$).
- $\ell = 0.9 \Longrightarrow 20\%$ robustness at 10% error (more robust than $\ell = 0.95$).

§ Forecast:

- Model used: $\ell = 0.9 \Longrightarrow 20\%$ robustness at 10% error.
- Forecast: $y_{T+1}^{s} = 0.9y_T = 4.725$.
- Outcome:
 - $y_{T+1} = 4.75$ on 18.9.2001.
 - \circ -0.5% forecast error.

1.3 Multi-Step Dynamics and Robustness

§ Uncertain historical model:

$$y_{t+1} = \lambda_{t+1} y_t, \quad t = 0, 1, 2 \dots, \ y_0 > 0, \text{ known}, \ \lambda_{t+1} \text{ uncertain}$$
 (15)

Thus:

$$y_t = y_0 \prod_{j=1}^t \lambda_j, \quad t = 1, 2, \dots$$
 (16)

§ Info-gap model. Asymmetric uncertainty:

$$\mathcal{U}(h,\widetilde{\lambda}) = \left\{ \lambda_t : (1-h)\widetilde{\lambda} \le \lambda_t \le \widetilde{\lambda}, \ t = 1, 2, \dots \right\}, \quad h \ge 0$$
 (17)

Assume $\tilde{\lambda} > 0$.

§ Slope-adjusted forecasting model. We must choose the 'slope' ℓ :

$$y_{t+1}^s = \ell y_t^s \tag{18}$$

Thus:

$$y_t^s = \ell^t y_0 \tag{19}$$

§ Performance requirement:

• Absolute error:

$$\varepsilon_t = |y_t^s - y_t| = \left| \ell^t - \prod_{j=1}^t \lambda_j \right| y_0 \tag{20}$$

• Performance requirement:

$$\varepsilon_t \le \varepsilon_c$$
 (21)

§ Robustness:

• Definition:

$$\widehat{h}_t(\ell, \varepsilon_c) = \max \left\{ h : \left(\max_{\lambda \in \mathcal{U}(h)} \varepsilon_t(\lambda) \right) \le \varepsilon_c \right\}$$
(22)

- m(h) is inner maximum in eq.(22): inverse of $\hat{h}_t(\varepsilon_c)$.
- Special case:

$$\ell \le \widetilde{\lambda} \tag{23}$$

- Recall: $y_0 > 0$.
- If $h \leq 1$ then $m_t(h)$ occurs for extremal values of $\lambda_1, \ldots, \lambda_t$ at horizon of uncertainty h: all are either $\widetilde{\lambda}$ or $(1-h)\widetilde{\lambda}$.
 - $m_t(h)$, for $h \leq 1$, is the greater of the following:

$$m_{t,1}(h) = \left(\tilde{\lambda}^t - \ell^t\right) y_0 \tag{24}$$

$$m_{t,2}(h) \geq \left| \ell^t - \prod_{j=1}^t (1-h)\widetilde{\lambda} \right| y_0$$
 (25)

$$= \left| \ell^t - (1-h)^t \widetilde{\lambda}^t \right| y_0 \tag{26}$$

• Clearly $m_{t,1}(h) > m_{t,2}(h)$ for small h. To find the transition:

$$\tilde{\lambda}^t - \ell^t \ge \ell^t - (1 - h)^t \tilde{\lambda}^t \tag{27}$$

$$\iff \frac{\widetilde{\lambda}^t - 2\ell^t}{\widetilde{\lambda}^t} \ge -(1 - h)^t \tag{28}$$

$$\iff (1-h)^t \geq \frac{2\ell^t - \widetilde{\lambda}^t}{\widetilde{\lambda}^t}$$
 (29)

$$\iff 1 - h \ge \left(\frac{2\ell^t - \widetilde{\lambda}^t}{\widetilde{\lambda}^t}\right)^{1/t} \tag{30}$$

$$h \leq 1 - \left(\frac{2\ell^t - \widetilde{\lambda}^t}{\widetilde{\lambda}^t}\right)^{1/t} \tag{31}$$

• Hence, for $h \leq 1$:

$$m_t(h) = \begin{cases} \left(\widetilde{\lambda}^t - \ell^t\right) y_0, & \text{if } h \le 1 - \left(\frac{2\ell^t - \widetilde{\lambda}^t}{\widetilde{\lambda}^t}\right)^{1/t} \\ \left(\ell^t - (1 - h)^t \widetilde{\lambda}^t\right) y_0, & \text{if } h_s < h \le 1 \end{cases}$$

$$(32)$$

which defines the constant, h_s , at which $m_t(h)$ switches.

• Equate $m_t(h)$ to ε_c and solve for h to find the robustness. One finds:

$$\widehat{h}_{t}(\ell, \varepsilon_{c}) = \begin{cases}
0, & \text{if } \varepsilon_{c} < \left(\widetilde{\lambda}^{t} - \ell^{t}\right) y_{0} \\
1 - \left(\frac{\ell^{t} y_{0} - \varepsilon_{c}}{\widetilde{\lambda}^{t} y_{0}}\right)^{1/t}, & \text{if } \left(\widetilde{\lambda}^{t} - \ell^{t}\right) y_{0} \leq \varepsilon_{c} \leq \ell^{t} y_{0}
\end{cases}$$
(33)

Note that eq.(33) is valid only for values of ε_c for which $\hat{h}_t \leq 1$.

- This robustness function, like eq.(14), p.4, shows:
 - o Discontinuity.
 - \circ Curve-crossing with $\hat{h}_t(\tilde{\lambda}, \varepsilon)$.

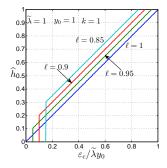


Figure 4: Robustness curves, eq.(33), t = 1.

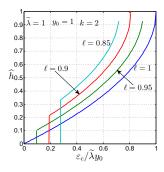


Figure 5: Robustness curves, eq.(33), t = 2.

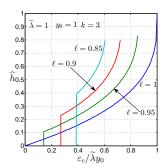


Figure 6: Robustness curves, eq.(33), t = 3.

\S Results: figs. 4–6:

• Curve crossing.

forecasting001.tex FORECASTING 7

- Discontinuity of robustness curve occurs at larger $\varepsilon_{\rm c}$ for longer forecast (higher t.)
- \bullet Robustness curves shift right (bad) and fall (bad) as t increases. E.g.:

$$\hat{h}_{t=3}(\varepsilon_{\rm c}=0.4,\ell=0.85)=0.4 < \hat{h}_{t=2}(\varepsilon_{\rm c}=0.4,\ell=0.85)=0.43 < \hat{h}_{t=1}(\varepsilon_{\rm c}=0.4,\ell=0.85)=0.55 (34)$$

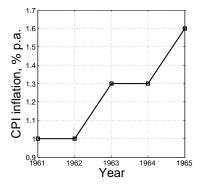
 \bullet Cost of robustness decreases (good) as t increases.

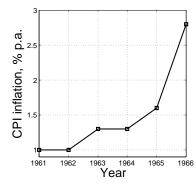
forecasting001.tex FORECASTING 8

2 Regression Prediction of US Inflation Data

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan, section 6.1.

2.1 Data





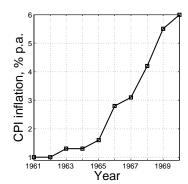


Figure 7: US inflation vs. year, 1961–1965.

Figure 8: US inflation vs. year, 1961–1966.

Figure 9: US inflation vs. year, 1961–1970.

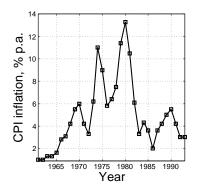


Figure 10: US inflation vs. year, 1961–1993.

§ US inflation:

• '61-'65: Linear?

• '61-'66: Quadratic?

• '61-'70: Piece-wise linear?

• '61-'93: A mess?

\S Modeling and predicting US inflation:

• '61-'65 Linear? Quadratic?

• Use the '61-'65 model for predicting '66:

$$y_i^{\rm r} = c_0 + c_1 t_i + c_2 t_i^2 \tag{35}$$

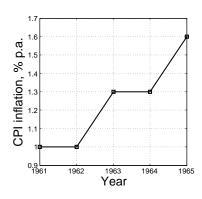


Figure 11: US inflation vs. year, 1961–1965.

2.2 System Model: Mean Squared Error

§ System model: Mean Squared Error (MSE).

For any vector of coefficients, c, the MSE is:

$$S_N^2(c) = \frac{1}{N} \sum_{i=1}^N (y_i - y_i^{\mathsf{r}})^2$$
 (36)

N = 5 for '61-'65. $y_1, ..., y_N$ are data. $y_i^{\rm r}$ is from eq.(35), p.8.

§ Least-squares estimate (LSE):

• Definition:

$$\widetilde{c} = \arg\min_{c} S_N^2(c) \tag{37}$$

- Meaning: \tilde{c} is optimal estimate w.r.t. historical data.
- Question: Is \tilde{c} optimal wrt future data?
- LS regression: \tilde{c} in $y_i^{\rm r}$ from eq.(35), p.8:

$$\widetilde{y}_i^{\mathrm{r}} = \widetilde{c}_0 + \widetilde{c}_1 t_i + \widetilde{c}_2 t_i^2 \tag{38}$$

• Calculation of LSE of coefficients:

$$\frac{\partial(S_N^2)}{\partial c_k} = 0, \quad k = 1, 2, 3 \tag{39}$$

3 linear equations in 3 unknowns.

• Does eq.(39) produce a minimum or maximum? Determinantal condition:

$$\left| \frac{\partial^2 (S_N^2)}{\partial c_k \partial c_j} \right| > 0 \quad \Longrightarrow \quad \text{minimum not maximum} \tag{40}$$

2.3 Uncertainty Model

§ Our knowledge:

- The data: y_1, \ldots, y_N
- The LS estimate of the coefficients, \tilde{c} , and the corresponding quadratic function, \tilde{y}_i^{τ} .
- Contextual info:

 \circ Under-prediction by $\widetilde{y}_i^{\mathrm{r}}$ is very likely: y_{N+1} may well exceed the LS prediction, $\widetilde{y}_{N+1}^{\mathrm{r}}$.

 \circ Over-prediction by \hat{y}_i^{r} is very unlikely: y_{N+1} will not be less than the LS prediction, $\hat{y}_{N+1}^{\mathrm{r}}$.

§ Info-gap model of asymmetric uncertainty about LSE $\widetilde{y}_{i,N+1}^{r}$:

$$\mathcal{U}(h) = \{ y_{N+1} : 0 \le y_{N+1} - \tilde{y}_{N+1}^{r} \le h \}, \quad h \ge 0$$
(41)

- Unbounded family of nested sets.
- No known worst case.
- Depends on the LS coefficients, \tilde{c} .

2.4 Robustness: Formulation and Derivation

§ If we knew y_{N+1} ('66):

$$S_{N+1}^{2}(c) = \frac{1}{N+1} \sum_{i=1}^{N+1} (y_i - y_i^{\mathrm{r}})^2$$
(42)

$$= \frac{N}{N+1}S_N^2(c) + \frac{\left(y_{N+1} - y_{N+1}^{\mathrm{r}}\right)^2}{N+1} \tag{43}$$

§ **Performance requirement.** For any coefficient vector, c, we require:

$$S_{N+1}(c) \le S_{c} \tag{44}$$

 \S Robustness of regression c: Greatest tolerable uncertainty.

$$\widehat{h}(c, S_{c}) = \max \left\{ h : \left(\max_{y_{N+1} \in \mathcal{U}(h)} S_{N+1}(c) \right) \le S_{c} \right\}$$

$$(45)$$

 $\S m(h)$ is inner maximum in eq.(45):

- Inverse of $\hat{h}(S_c)$.
- From S_{N+1} in eq.(43): m(h) occurs when y_{N+1} equals an extreme value at horizon of uncertainty h: either \tilde{y}_{N+1}^{r} or $\tilde{y}_{N+1}^{r} + h$:

$$m_1(h) = \sqrt{\frac{N}{N+1}S_N^2 + \frac{\left(\tilde{y}_{N+1}^r - y_{N+1}^r\right)^2}{N+1}}$$
 (46)

$$m_2(h) = \sqrt{\frac{N}{N+1}S_N^2 + \frac{\left(\tilde{y}_{N+1}^r + h - y_{N+1}^r\right)^2}{N+1}}$$
 (47)

• m(h) is the greater of these two expressions:

$$m(h) = \max[m_1(h), m_2(h)]$$
 (48)

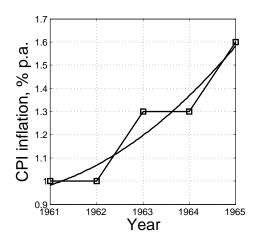
- Recall our economic understanding: actual inflation, y_{N+1} , will exceed the LSE value, \tilde{y}_{N+1}^{r} .
- Hence only consider regressions $y_i^{\rm r}$ for which:

$$\widetilde{y}_{N+1}^{\mathbf{r}} \le y_{N+1}^{\mathbf{r}} \tag{49}$$

• Hence eq.(48) becomes:

$$m(h) = \begin{cases} \sqrt{\frac{N}{N+1} S_N^2 + \frac{(\widetilde{y}_{N+1}^r - y_{N+1}^r)^2}{N+1}} & \text{if } h < 2\left(y_{N+1}^r - \widetilde{y}_{N+1}^r\right) \\ \sqrt{\frac{N}{N+1} S_N^2 + \frac{(\widetilde{y}_{N+1}^r + h - y_{N+1}^r)^2}{N+1}} & \text{if } h \ge 2\left(y_{N+1}^r - \widetilde{y}_{N+1}^r\right) \end{cases}$$
(50)

- Thus m(h) may switch between the two functions and display discontinuity of slope.
- Recall: m(h) is the inverse of the robustness function.



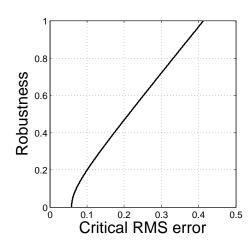


Figure 12: US inflation vs. year, 1961–1965, and least squares fit.

Figure 13: Robustness vs. critical root mean squared error for inflation 1961–1965.

2.5 Robustness: Results

§ Least squares fit: fig. 12: Maximal fidelity of quadratic function to the data.

§ Robust of LS fit: fig. 13.

- Trade off: Greater rbs. \equiv greater critical RMS error, S_c .
- Zeroing: No robustness of estimated RMS error, S_c .
- What do the numbers mean?
 - $\hat{h} = 0.2 \text{ at } S_{c} = 0.1$:

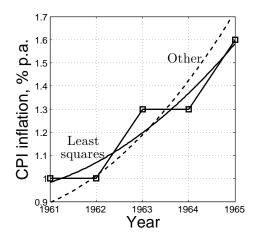
 \tilde{y}_{iN+1}^{r} can err by as much as 0.2 (from info-gap model, eq.(41), p.10)

if we require that

 S_{N+1}^2 can err by no more than 0.1 (from performance requirement, eq.(44), p.10). $\circ \hat{h} = 0.7$ at $S_c = 0.3$:

 $\widetilde{y_i^{\rm r}}_{N+1}$ can err by as much as 0.7 (from in fo-gap model, eq.(41), p.10) if we require that

 S_{N+1}^2 can err by no more than 0.3 (from performance requirement, eq.(44), p.10).



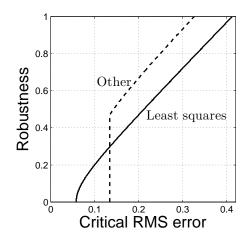


Figure 14: US inflation vs. year, 1961–1965, and least squares fit (solid) and other fit (dash).

Figure 15: Robustness vs. critical root mean squared error for inflation 1961–1965 for least squares fit (solid) and other fit (dash).

§ Least squares and other fit: fig. 14.

- LS fit: Maximal average fidelity of quadratic function to the data.
- Other fit. Biased fidelity:
 - o Under-estimate, on average, of early data. Note: 1962 is almost exact!
 - o Over-estimate, on average, of late data.
 - o Over-estimate of future wrt historical trend. Maybe 1966 will be exact!

§ Robust of LS and other fit: fig. 15.

- Zeroing: "Other" zeros at greater S_c : it's nominal MSE is worse.
- Trade off: Both curves. 'Other' has greater (infinite) slope at zeroing value: lower cost of robustness.
- Curve-crossing: preference reversal.
- What do the numbers mean?
 - At $S_{\rm c} = 0.1$:
 - $\hat{h}_{\text{other}} = 0$. $\hat{h}_{\text{LS}} = 0.2$. Forecast y_{N+1} with $\tilde{y}_{N+1}^{\text{r}}(\tilde{c})$ if $S_{\text{c}} = 0.1$ is adequate (or required).
 - At $S_{\rm c} = 0.3$:
 - $\hat{h}_{\text{other}} = 0.8$. $\hat{h}_{LS} = 0.6$. Forecast y_{N+1} with $y_{N+1}^{r}(c)$ if $S_c = 0.3$ is adequate (or required).
 - Curve-crossing: **preference reversal.**
 - Why forecast y_{N+1} with $y_{N+1}^{r}(c)$ rather than with $\tilde{y}_{N+1}^{r}(\tilde{c})$?
 - · Fidelity to data and forecast is our measure of performance of a forecaster, eq.(44), p.10.
 - $y_{N+1}^{r}(c)$ gives adequate fidelity $(S_{c}=0.3)$ over wider range of uncertainty than $\tilde{y}_{N+1}^{r}(\tilde{c})$.

3 Auto-Regression and Data Revision

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan, section 6.2.

3.1 The Problem of Data Revision

§ National statistical bureaus revise economic data over time.

1974:

- Real US GNP initially thought to have dropped 9.1% at annual rate between 3rd and 4th quarters.
- Largest drop since great depression.
- o Final estimate, 20 years later: real GNP dropped 1.9% at annual rate.
- o Not all revisions are this large.
- This revision large because of great economic turbulence then.
- o Precisely in times of economic uncertainty we need accurate data.

• 2007–2009:

- o Typical revisions of 1 or 2 percentage points.
- Table 2.

	7q1	7q2	7q3	7q4	8q1
current	1.2	3.2	3.6	2.1	-0.7
previous	0.1	4.8	4.8	-0.2	0.9
	8q2	8q3	8q4	9q1	9q2
current	1.5	-2.7	-5.4	-6.4	-1.0
Current	1.0	2.1	0.1	0.1	1.0

Table 2: Current and previous estimates of real GDP: percent change from preceding period. 2007q1 to 2009q2. Seasonally adjusted at annual rates. Bureau of Economic Analysis, July 31, 2009.

3.2 Autoregression

 $\S N$ scalar data points: $y = (y_1, \ldots, y_N)^T$.

E.g. inflation data over N sequential years as in fig. 7 on p.8.

§ Regression:

Choose coefficients $c = (c_1, \ldots, c_J)^T$ of an auto-regression of order J for these data:

$$y_n = \sum_{j=1}^{J} c_j y_{n-j} (51)$$

$$= c^T y_{n-1,n-J} \tag{52}$$

where $y_{n-1,n-J} = (y_{n-1}, \ldots, y_{n-J})^T$.

§ Define mean squared error of the auto-regression (AR) of the data:

$$S^{2}(c) = \frac{1}{N-J} \sum_{n=J+1}^{N} \left(y_{n} - c^{T} y_{n-1,n-J} \right)^{2}$$
(53)

§ Our system model is the RMS error, S(c).

§ Performance requirement:

$$S(c) \le S_{c} \tag{54}$$

§ The mean squared error can be expressed more compactly as:

$$S^2(c) = \frac{1}{N - J} y^T V y \tag{55}$$

where V is defined as follows.

- e_n denotes the *n*th standard basis vector in \Re^N : the column *N*-vector with a 1 in the *n*th location and 0's elsewhere.
 - Now the mean squared error can be written:

$$S^{2}(c) = \frac{1}{N-J} \sum_{n=J+1}^{N} \left[e_{n}^{T} y - \sum_{j=1}^{J} c_{j} e_{n-j}^{T} y \right]^{2}$$
(56)

$$= \frac{1}{N-J} \sum_{n=J+1}^{N} \left[\underbrace{\left(e_n^T - \sum_{j=1}^{J} c_j e_{n-j}^T \right)}_{C^T} y \right]^2$$
 (57)

$$= \frac{1}{N-J} \sum_{n=J+1}^{N} y^T \zeta_n \zeta_n^T y \tag{58}$$

$$= \frac{1}{N-J} y^T \underbrace{\left(\sum_{n=J+1}^N \zeta_n \zeta_n^T\right)}_{} y \tag{59}$$

$$= \frac{1}{N - J} y^T V y \tag{60}$$

This is eq.(55), with $N \times N$ matrix V from eq.(59) and N-vectors ζ_n from eq.(57).

ullet V depends on the regression coefficients c but not on the data.

§ The AR coefficients that minimize the mean squared error are found by solving:

$$\frac{\partial S^2}{\partial c} = 0 \tag{61}$$

• Differentiating eq.(53) and rearranging one finds:

$$\underbrace{\sum_{n=J+1}^{N} y_n y_{n-1,n-J}}_{z} = \underbrace{\left(\sum_{n=J+1}^{N} y_{n-1,n-J} y_{n-1,n-J}^{T}\right)}_{V} c$$
 (62)

which defines the *J*-vector z and the $J \times J$ matrix Y.

• The least squares (LS) auto-regression coefficients are:

$$\widetilde{c} = Y^{-1}z \tag{63}$$

If the inverse matrix does not exist then a generalized inverse needs to be used.

3.3 Uncertainty Model and Robustness Function

§ Best estimate of the data: $\tilde{y} = (\tilde{y}_1, \dots, \tilde{y}_N)^T$.

E.g. \tilde{y} might be current estimates of percent change in real GDP shown in table 2, p.13.

§ Info-gap model for asymmetric information:

$$\mathcal{U}(h) = \{ y : \ \widetilde{y}_n - w_{n1}h \le y_n \le \widetilde{y}_n + w_{n2}h, \ n = 1, \dots, N \}, \quad h \ge 0$$
 (64)

- Uncertainty weights, w_{n1} and w_{n2} , are non-negative.
- If \widetilde{y}_n is certain, then $w_{n1} = 0 = w_{n2}$.
- If \widetilde{y}_n is believed to be an **underestimate** then $w_{n1} = 0$ and $w_{n2} = 1$.
- If \widetilde{y}_n is believed to be an **over estimate** then $w_{n1} = 1$ and $w_{n2} = 0$.
- If the uncertainty is **symmetric** then uncertainty weights $w_{n1} = w_{n2}$.

§ Robustness function, definition:

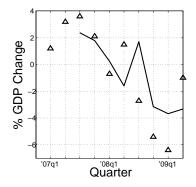
$$\widehat{h}(c, S_{c}) = \max \left\{ h : \left(\max_{y \in \mathcal{U}(h)} S(c) \right) \le S_{c} \right\}$$
(65)

3.4 Policy Exploration

§ **Example** is based on 2nd-order auto-regressions, so J = 2 in eq.(51), p.13.

We use the percent change in the US GDP for 2007q1-2009q2 in table 2, p.13.

3.4.1 Symmetric Uncertainty



Ssential No. of the control of the c

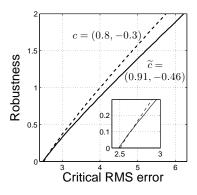
Figure 16: Current estimates of US real GDP change vs. quarter, and least squares autoregression.

Figure 17: Robustness vs. critical RMS error of least squares auto-regression. Symmetric uncertainty.

§ The data.

- Fig. 16: GDP data, table 2, p.13, and 2nd-order least-squares auto-regression, \tilde{c} from eq.(63).
- LS regression coefficients are $\tilde{c} = (0.9139, -0.4647)^T$.
- The RMS error of this regression is $S(\tilde{c}) = 2.49$, so the AR misses the data, on average, by about 2.5 percentage points of GDP.
 - This rather large error occurs mostly in last 5 quarters: data at '08q2 and '09q2 deviate from trend.
 - Great uncertainty; no information on direction or magnitude of data revision.

- Use info-gap model of eq.(64) with $w_{n1} = w_{n2} = 1$ for $n = 1, \ldots, N$.
- § Robustness curve for LS AR \tilde{c} with symmetric uncertainty, fig. 17.
 - Zeroing at $S(\tilde{c}) = 2.49$.
 - Trade off.
 - $\hat{h}(S_c = 4) = 0.88$: RMS error no larger than 4% is guaranteed with robustness of 0.88: revisions as large as 0.88 percentage points can occur and the RMS error will not exceed 4%.



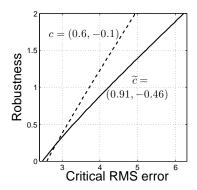


Figure 18: Robustness vs. critical RMS error with least squares (solid) and other (dash) autoregression. Symmetric uncertainty.

Figure 19: Robustness vs. critical RMS error with least squares (solid) and other (dash) autoregression. Symmetric uncertainty.

§ Robustness curves for non-LS AR with symmetric uncertainty, figs. 18 and 19.

- LS robustness curve (solid) reproduced from fig. 17.
- LS robustness curve zeros to left of non-LS by definition of **least** squares.
- Non-LS robustness curves steeper: lower cost of robustness.
- Curve crossing and preference reversal.
- Two foci of uncertainty:
 - Statistical: seek small RMS.
 - o Info-gap: seek large robustness.

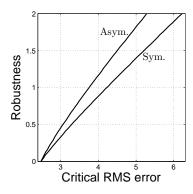
3.4.2 Asymmetric Uncertainty

§ Uncertainty and contextual information:

- Data in fig. 16, p.15.
- Current estimates at 2008q2 and 2009q2 are over-estimates and will be revised down.
- Use info-gap model of eq.(64). Choose uncertainty weights:
 - $w_{6,2} = w_{10,2} = 0$: 6th and 10th estimates cannot go up.
 - $\circ w_{6,1} = w_{10,1} = 1$: 6th and 10th estimates can go down.
 - $\circ w_{nj} = 1$ for all other n and j (all other estimates can go either up or down).
 - In summary:

$$w_2 = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0] \tag{66}$$

$$w_1 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1] \tag{67}$$



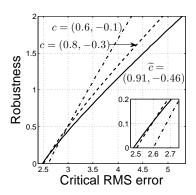


Figure 20: Robustness vs. critical RMS error for least squares regression with symmetric and asymmetric uncertainty.

Figure 21: Robustness vs. critical RMS error with least squares (solid) and other (dash, dotdash) regressions. Asymmetric uncertainty.

§ LS auto-regression, fig. 20:

- \tilde{c} does not depend on the info-gap model, so \tilde{c} is the same as before: $\tilde{c} = (0.9139, -0.4647)^T$.
- Furthermore, the RMS error of the LS regression same as before: $S(\tilde{c}) = 2.49$.
- \bullet However, the robustness of \widetilde{c} does depend on the info-gap model, fig. 20.
 - \circ Zeroing: both curves reach $S_{\rm c}$ axis at $S(\tilde{c})$.
 - Asymmetric robustness curve higher due to greater info in asymmetric info-gap model.

§ Non-LS auto-regression, fig. 21:

- Solid curve is LS regression: the "Asym." curve from fig. 20.
- Curve-crossing with non-LS regressions.
- Large robustness gain by the non-LS over LS regressions.
- Compare with figs. 18 and 19:
 - Robustness gain is greater in current case.
 - Added asymmetric information enhances robustness of LS regression.
 - Further enhances the robustness of these non-LS regressions.