
Lecture Notes on

Time-Value of Money
Yakov Ben-Haim

Yitzhak Moda’i Chair in Technology and Economics
Faculty of Mechanical Engineering

Technion — Israel Institute of Technology
Haifa 32000 Israel

yakov@technion.ac.il

http://info-gap.technion.ac.il http://yakovbh.net.technion.ac.il

Source material:

• DeGarmo, E. Paul, William G. Sullivan, James A. Bontadelli and Elin M. Wicks, 1997, Engi-

neering Economy. 10th ed., chapters 3–4, Prentice-Hall, Upper Saddle River, NJ.

• Ben-Haim, Yakov, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.

• Ben-Haim, Yakov, 2006, Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd

edition, Academic Press, London.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books.

These notes are no more than an aid in following the lectures.

Contents

I Time-Value of Money 4

1 Time, Money and Engineering Design 4

2 Simple Interest 5

3 Compound Interest 6

4 Interest Formulas for Present and Future Equivalent Values 7

4.1 Single Loan or Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Constant Loan or Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Find F given A, N and i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.2 Find P given A, N and i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.3 Find A given P , N and i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Variable Loan or Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4 Variable Interest, Loan or Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Compounding More Often Than Once per Year . . . . . . . . . . . . . . . . . . . . . . 14

II Applications of Time-Money Relationships 16

5 Present Worth Method 17

6 Future Worth Method 20

0\lectures\Econ-Dec-Mak\money-time02.tex 20.3.2025 © Yakov Ben-Haim 2025.

1



III Implications of Uncertainty 22

7 Uncertain Profit Rate, i, of a Single Investment, P 22

7.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Decision Making and the Innovation Dilemma . . . . . . . . . . . . . . . . . . . . . . . 26

8 Uncertain Constant Yearly Profit, A 27

8.1 Info-Gap on A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.2 PDF of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8.3 Info-Gap on PDF of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Uncertain Return, i, on Uncertain Constant Yearly Profit, A 33

10 Present and Future Worth Methods with Uncertainty 35

10.1 Example 5, p.17, Re-Visited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.2 Example 7, p.19, Re-Visited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.3 Example 8, p.21, Re-Visited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.4 Info-Gap on A: Are PW and FW Robust Preferences the Same? . . . . . . . . . . . . 42

10.5 Info-Gap on i: Are PW and FW Robust Preferences the Same? . . . . . . . . . . . . 43

11 Strategic Uncertainty 45

11.1 Preliminary (Non-Strategic) Example: 1 Allocation . . . . . . . . . . . . . . . . . . . . 45

11.2 1 Allocation with Strategic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.3 2 Allocations with Strategic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11.4 Asymmetric Information and Strategic Uncertainty: Employment Offer . . . . . . . . 50

12 Opportuneness: The Other Side of Uncertainty 54

12.1 Opportuneness and Uncertain Constant Yearly Profit, A . . . . . . . . . . . . . . . . . 54

12.2 Robustness and Opportuneness: Sellers and Buyers . . . . . . . . . . . . . . . . . . . . 56

12.3 Robustness Indifference and Its Opportuneness Resolution . . . . . . . . . . . . . . . . 57

2



money-time02.tex Time-Value of Money 3

§ The problem:

• Given several different design concepts, each technologically acceptable.

• Select one option or prioritize all the options.

§ The economic approach:

• Treat each option as a capital investment.

• Consider:

◦ Associated expenditures for implementation.

◦ Revenues or savings over time.

◦ Attractive or acceptable return on investment.

◦ Cash flows over time: time-value of money.

§ Why should the engineer study economics?

• Cost and revenue are unavoidable in practical engineering in industry, government, etc.

• The engineer must be able to communicate and collaborate with the economist:

◦ Economic decisions depend on engineering considerations.

◦ Engineering decisions depend on economic considerations.

• Technology influences society, and society influences technology:

Engineering is both a technical and a social science.1

§ We will deal with design-prioritization in part II, p.16.

§ We first study the time-value of money in part I on p.4.

§ In part III we will study the implications of uncertainty.

1Yakov Ben-Haim, 2000, Why the best engineers should study humanities, Intl J for Mechanical Engineering Edu-
cation, 28: 195–200. Link to pre-print on: http://info-gap.com/content.php?id=23
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Part I

Time-Value of Money

1 Time, Money and Engineering Design

§ Design problem: discrete options.

• Goal: design system for 10-year operation.

• Option 1: High quality, expensive 10-year components.

• Option 2: Medium quality, less expensive 5-year components. Re-purchase after 5 years.

• Which design preferable?

◦ What are the considerations?

◦ How to compare costs?

§ Design problem: continuous options.

• Goal: design system for 10-year operation.

• Many options, allowing continuous trade off between price and life.

• Which design preferable?

◦ What are the considerations?

◦ How to compare costs?

§ Repair options.

• The production system is broken.

• When functional, the system produces goods worth $500,000 per year.

• Various repair technologies have different costs and projected lifetimes.

• How much can we spend on repair that would return the system to N years of production?

• Which repair technology should we use?

• Should we look for other repair technologies?
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2 Simple Interest

§ Primary source: DeGarmo et al, p.65.

§ Interest: “Money paid for the use of money lent (the principal), or for forbearance of a debt,

according to a fixed ratio”.2

§ Biblical prohibition: “If you lend money to any of my people with you that is poor, you shall

not be to him as a creditor; nor shall you lay upon him interest.”3 (transparency)

§ Simple interest:4 The total amount of interest paid is linearly proportional to:

• Initial loan, P , (the principal).5

• The number of periods, N .

§ Interest rate, i:

• Proportionality constant.

• E.g., 10% interest: i = 0.1.

§ Total interest payment, I, on principal P for N periods at interest rate i:

I = PNi (1)

Example: P = $200, N = 5 periods (e.g. years), i = 0.1:

I = $200× 5× 0.1 = $100 (2)

§ Total repayment:

C = (1 +Ni)P (3)

§ We will not use simple interest because it is not used in practice.

2OED, online, 21.9.2012.
3Exodus, 22:24.
4Interest: rebeet. “rebeet” is written with taf.
5Principal: keren.
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3 Compound Interest

§ Primary source: DeGarmo et al, p.66.

§ Compound interest:6 The interest charge for any period is linearly proportional to both:

• Remaining principal, and

• Accumulated interest up to beginning of that period.

Example 1 4 different compound-interest schemes. See table 1

• $8,000 principal at 10% annually for 4 years.

• Plan 1: At end of each year pay $2,000 plus interest due.

• Plan 2: Pay interest due at end of each year, and pay principal at end of 4 years.

• Plan 3: Pay in 4 equal end-of-year payments.

• Plan 4: Pay principal and interest in one payment at end of 4 years.

Year Amount owed Interest Principal Total
at beginning accrued payment end-of-year

of year for year payment

Plan 1:
1 8,000 800 2,000 2,800
2 6,000 600 2,000 2,600
3 4,000 400 2,000 2,400
4 2,000 200 2,000 2,200

Total: 20,000 $-yr 2,000 8,000 10,000

Plan 2:
1 8,000 800 0 800
2 8,000 800 0 800
3 8,000 800 0 800
4 8,000 800 8,000 8,800

Total: 32,000 $-yr 3,200 8,000 11,200

Plan 3:
1 8,000 800 1,724 2,524
2 6,276 628 1,896 2,524
3 4,380 438 2,086 2,524
4 2,294 230 2,294 2,524

Total: 20,960 $-yr 2,096 8,000 10,096

Plan 4:
1 8,000 800 0 0
2 8,800 880 0 0
3 9,680 968 0 0
4 10,648 1,065 8,000 11,713

Total: 37,130 $-yr 3,713 8,000 11,713

Table 1: 4 repayment plans. $8,000 principal, 10% annual interest, 4 years. (Transp.)

6Compound interest: rebeet de’rebeet, rebeet tzvurah.
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4 Interest Formulas for Present and Future
Equivalent Values

4.1 Single Loan or Investment

§ Primary source: DeGarmo et al, pp.73–77.

-
0
?

P

1 2 . . . N − 1 N
?

F

Time

Figure 1: Cash flow program, section 4.1.

§ Cash flow program, fig. 1:

• Single present sum P : loan or investment at time t = 0.

• Single future sum F .

• N periods.

• i: Interest rate (for loan) or profit rate (for investment).

§ Find F given P :

• After 1 period: F = (1 + i)P .

• After 2 periods: F = (1 + i)[(1 + i)P ] = (1 + i)2P .

• After N periods:

F = (1 + i)NP (4)

§ Find P given F . Invert eq.(4):

P =
1

(1 + i)N
F (5)
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4.2 Constant Loan or Investment

§ Primary source: DeGarmo et al, pp.78–85.
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Figure 2: Cash flow program, section 4.2.

§ Cash flow program, fig. 2:

• A: An annual loan, investment or profit, occurring at the end of each period.

(Sometimes called annuity)7

• i: Interest rate (for loan) or profit rate (for investment).

• N periods.

§ Equivalent present, annual and future sums:

• Given A, N and i, find:

◦ Future equivalent sum F occurring at the same time as the last A, at end of period N .

(Section 4.2.1, p.9.)

◦ Present equivalent sum P :

loan or investment occurring 1 period before first constant amount A.

(Section 4.2.2, p.10.)

• Given P , N and i, find:

◦ Annual equivalent sum A occuring at end of each period.

(Section 4.2.3, p.11.)

7Annuity: Kitzvah shnatit.
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4.2.1 Find F given A, N and i

§ Motivation:

• Make N annual deposits of A dollars at end of each year.

• Annual interest is i.

• How much can be withdrawn at end of year N?

§ Motivation:

• Earn N annual profits of A dollars at end of each year.

• Re-invest at profit rate i.

• How much can be withdrawn at end of year N?

§ Sums of a geometric series that we will use frequently, for x ̸= 1:

N−1∑

n=0

xn =
xN − 1

x− 1
(6)

N−1∑

n=1

xn =
xN − x

x− 1
(7)

• Special case: x = 1
1+i :

N−1∑

n=0

1

(1 + i)n
=

1− 1
(1+i)N

1− 1
1+i

=
1 + i− (1 + i)−(N−1)

i
(8)

N−1∑

n=1

1

(1 + i)n
=

1
1+i −

1
(1+i)N

1− 1
1+i

=
1− (1 + i)−(N−1)

i
(9)

§ Find F given A, N and i: Value of annuity plus interest after N periods.

• From Nth period: (1 + i)0A. (Because last A at end of last period.)

• From (N − 1)th period: (1 + i)0(1 + i)A = (1 + i)1A.

• From (N − 2)th period: (1 + i)0(1 + i)(1 + i)A = (1 + i)2A.

• From (N − n)th period: (1 + i)nA, n = 0, . . . , N − 1.

• After all N periods:

F = (1 + i)0A+ (1 + i)1A+ (1 + i)2A+ · · ·+ (1 + i)N−1A (10)

=
N−1∑

n=0

(1 + i)nA (11)

=
(1 + i)N − 1

i
A (12)

§ Example of eq.(12), table 2, p.10 (transparency):

• Column 3: ratio of final worth, F , to annuity, A. Why does F/A increase as i increases?

• Column 4: effect of compound interest: F > NA. Note highly non-linear effect at long time.
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N i F/A F/NA

5 0.03 5.3091 1.0618
5 0.1 6.1051 1.2210

10 0.03 11.4639 1.1464
10 0.1 15.9374 1.5937

30 0.03 47.5754 1.5858
30 0.1 164.4940 5.4831

Table 2: Example of eq.(12). (Transp.)

4.2.2 Find P given A, N and i

§ Motivation:

• Repair of a machine now would increase output by $20,000 at end of each year for 5 years.

• We can take a loan now at 7% interest to finance the repair.

• How large a loan can we take if we must cover it from

accumulated increased earning after 5 years?

§ Repayment of loan, P , after N years at interest i, from eq.(4), p.7:

F = (1 + i)NP (13)

§ The loan, P , must be equivalent to the annuity, A. Hence:

Eq.(13) must equal accumulated value of increased yearly earnings, A, eq.(12), p.9:

F =
(1 + i)N − 1

i
A (14)

§ Equate eqs.(13) and (14) and solve for P :

P =
(1 + i)N − 1

i(1 + i)N
A =

1− (1 + i)−N

i
A (15)

• This is the largest loan we can cover from accumulated earnings.

• This is the present (starting time, t = 0) equivalent value of the annuity.

§ Example of eq.(15), table 3 (transparency):

• Column 3: ratio of loan, P , to annuity, A. Why does P/A decrease as i increases, unlike

table 2?

• Column 4: effect of compound interest: P < NA.

N i P/A P/NA

5 0.03 4.580 0.916
5 0.1 3.791 0.758

10 0.03 8.530 0.853
10 0.1 6.145 0.615

30 0.03 19.600 0.655
30 0.1 9.427 0.314

Table 3: Example of eq.(15). (Transp.)
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4.2.3 Find A given P , N and i

§ F and A are related by eq.(12), p.9:

F =
(1 + i)N − 1

i
A (16)

• Thus:

A =
i

(1 + i)N − 1
F (17)

• F and P are related by eq.(4), p.7:

F = (1 + i)NP (18)

• Thus A and P are related by:

A =
i(1 + i)N

(1 + i)N − 1
P (19)

Example 2 We can now explain Plan 3 in table 1, p.6.

• The principal is P = 8, 000.

• The interest rate is i = 0.1.

• The number of periods is N = 4.

• Thus the equivalent equal annual payments, A, are from eq.(19):

A =
0.1× 1.14

1.14 − 1
8, 000 = 0.3154708× 8, 000 = 2, 523.77 (20)
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4.3 Variable Loan or Investment

§ Cash flow program:

• A1, A2, . . . , AN : Sequence of annual loans or investments,

occurring at the end of each period.

• i: Interest rate (for loan) or profit rate (for investment).

• N periods.

§ Future equivalent sum: Given A1, A2, . . . , AN and i, find:

• Future equivalent sum F occurring at the same time as AN .

• Generalization of eq.(10) on p.9:

• From Nth period: (1 + i)0AN .

• From (N − 1)th period: (1 + i)0(1 + i)AN−1 = (1 + i)1AN−1.

• From (N − 2)th period: (1 + i)0(1 + i)(1 + i)AN−2 = (1 + i)2AN−2.

• From (N − n)th period: (1 + i)nAN−n, n = 0, . . . , N − 1.

F = (1 + i)0AN−0 + (1 + i)1AN−1 + (1 + i)2AN−2 + · · ·+ (1 + i)N−1AN−(N−1) (21)

=
N−1∑

n=0

(1 + i)nAN−n (22)

§ Present equivalent sum: Given A1, A2, . . . , AN and i, find:

• Present equivalent sum P : loan or investment occurring 1 period before first amount A1.

• Analogous to eqs.(13)–(15), p.10:

◦ Repayment of loan, P , after N years at interest i, from eq.(4), p.7:

F = (1 + i)NP (23)

◦ This must equal accumulated value of increased yearly earnings, eq.(22).

◦ Equate eqs.(22) and (23) and solve for P :

P =
1

(1 + i)N

N−1∑

n=0

(1 + i)nAN−n (24)

=
N−1∑

n=0

(1 + i)−(N−n)AN−n (25)

— This is the largest loan we can cover from accumulated earnings.

— This is the present (starting time) equivalent value of the annuity.
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4.4 Variable Interest, Loan or Investment

§ Partial source: DeGarmo et al, p.101.

§ Cash flow program:

• A1, A2, . . . , AN : Sequence of annual loans or investments,

occurring at the end of each period.

• i1, i2, . . . , iN : Sequence of annual interest rates (for loan) or profit rates (for investment).

• N periods.

§ Future equivalent sum: Given A1, A2, . . . , AN and i1, i2, . . . , iN , find:

• Future equivalent sum F occurring at the same time as AN .

• Generalization of eqs.(21) and (22) on p.12:

• From Nth period: (1 + iN )0AN .

• From (N − 1)th period: (1 + iN )0(1 + iN−1)AN−1.

• From (N − 2)th period: (1 + iN )0(1 + iN−1)(1 + iN−2)AN−2.

• From (N − n)th period: (1 + iN )0(1 + iN−1) · · · (1 + iN−(n−1))(1 + iN−n)AN−n,

n = 0, . . . , N − 1.

F =
N−1∑

n=0

(
n∏

k=1

(1 + iN−k)

)
AN−n (26)

§ Present equivalent sum: Given A1, A2, . . . , AN and i1, i2, . . . , iN , find:

• Present equivalent sum P : loan or investment occurring 1 period before first amount A1.

• Analogous to eqs.(23)–(24), p.12:

◦ Repayment of loan, P , after N years at interest i, generalizing eq.(4), p.7:

F =

(
N−1∏

k=0

(1 + iN−k)

)
P (27)

◦ This must equal accumulated value of increased yearly earnings, eq.(26).

◦ Equate eqs.(26) and (27) and solve for P :

P =

∑N−1
n=0 (

∏n
k=1(1 + iN−k))AN−n∏N−1
k=0 (1 + iN−k)

(28)

— This is the largest loan we can cover from accumulated earnings.

— This is the present (starting time) equivalent value of the annuity.
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4.5 Compounding More Often Than Once per Year

Example 3 (DeGarmo, p.105.)

• Statement:

$100 is invested for 10 years at nominal 6% interest per year, compounded quarterly.

What is the Future Worth (FW ) after 10 years?

• Solution 1:

◦ 4 compounding periods per year. Total of 4× 10 = 40 periods.

◦ Interest rate per period is (6%)/4 = 1.5% which means i = 0.015.

◦ The FW after 10 years is, from eq.(4), p.7:

F = (1 + i)NP = 1.01540 × 100 = $181.40 (29)

• Solution 2:

◦ What we mean by “compounded quarterly” is that

the effective annual interest rate is defined by the following 2 relations:

iqtr = inominal/4 (30)

and

1 + ief ann = (1 + iqtr)
4 =⇒ ief ann = (1 + 0.015)4 − 1 = 0.061364 (31)

◦ Thus the effective annual interest rate is 6.1364%.

◦ The FW after 10 years is, from eq.(4), p.7:

F = 1.06136410 × 100 = $181.40 (32)

• Why do eqs.(29) and (32) agree? The general solution will explain.

§ General solution.

• A sum P is invested for N years at

nominal annual interest i compounded m equally spaced times per year.

• The interest rate per period is (generalization of eq.(30)):

iper =
i

m
(33)

• What we mean by “compounded m times per year” is that

the effective annual interest rate is determined by (generalization of eq.(31)):

1 + ief ann = (1 + iper)
m (34)

• The FW by the “period calculation” method is:

Fper = (1 + iper)
mNP (35)

• The FW by the “effective annual calculation” method is:

Fef ann = (1 + ief ann)
NP (36)

• Combining eqs.(34)–(36) shows:

Fef ann = Fper (37)
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Example 4 § Example. (DeGarmo, p.105)

• $10,000 loan at nominal 12% annual interest for 5 years, compounded monthly.

• Equal end-of-month payments, A, for 5 years.

• What is the value of A?

• Solution:

◦ The period interest, eq.(33), p.14, is i = 0.12/12 = 0.01.

◦ The principle, P = 10, 000, is related to equal monthly payments A by eq.(19), p.11:

A =
i(1 + i)N

(1 + i)N − 1
P (38)

= 0.0222444P (39)

= $222.44 (40)

• Why is the following calculation not correct?

◦ The FW of the loan is:

FW = 1.015×12P = 1.816697× 10, 000 = 18, 166.97 (41)

◦ Divide this into 60 equal payments:

A′ =
18, 166.97

60
= $302.78 (42)

◦ Eq.(41) is correct.

◦ Eq.(42) is wrong because it takes a final worth and charges it at earlier times,

ignoring the equivalent value of these intermediate payments.

This explains why A′ > A.



money-time02.tex Time-Value of Money 16

Part II

Applications of Time-Money Relationships

§ The problem:

• Given several different design concepts, each technologically acceptable.

• Select one option or prioritize all the options.

§ The economic approach:

• Treat each option as a capital investment.

• Consider:

◦ Expenditures for implementation.

◦ Revenues or savings over time.

◦ Attractive or acceptable return on investment.

§ We will consider two time-value methods:

• Present Worth, section 5, p.17.

• Future Worth, section 6, p.20.

• We will show that these are equivalent.

§ Central idea: Minimum Attractive Rate of Return (MARR):8

• The MARR is an interest rate or profit rate.

• Subjective judgment.

• Least rate of return from other known alternatives.

• Examples: DeGarmo pp.141–143.

8Shiur ha’revach ha’kvil ha’minimali.
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5 Present Worth Method

§ Primary source: DeGarmo et al, pp.144–149.

§ Basic idea of present worth (PW ):

• Evaluate present worth (net present value) of all cash flows (cost and revenue),

based on an interest rate usually equal to the MARR.

• The PW is the profit left over after the investment.

• We assume that cash revenue is invested at interest rate equal to the MARR.

• The PW is also called Net Present Value (NPV).

§ Basic Formula for calculating the PW.

• i = interest rate, e.g. MARR.

• Fk = cash flow in end of periods k = 0, 1, , . . . , N . Positive for revenue, negative for cost.

F0 = initial investment at start of the k = 1 period.

• N = number of periods.

• Basic relation, eq.(5), p.7, PW of revenue Fk at period k:

Pk =
1

(1 + i)k
Fk (43)

• Formula for calculating the PW of revenue stream F0, F1, . . . , FN :

PW = (1 + i)−0F0 + (1 + i)−1F1 + · · ·+ (1 + i)−kFk + · · ·+ (1 + i)−NFN (44)

=
N∑

k=0

(1 + i)−kFk (45)

• For a constant revenue stream, F, F , . . . , F from k = 0 to k = N :

PW =
N∑

k=0

(1 + i)−kF (46)

=

(
1

1+i

)N+1
− 1

1
1+i − 1

F (47)

=
1 + i− (1 + i)−N

i
F (48)

Example 5 Does the Present Worth method justify the following project?

• S = Initial cost of the project = $10,000.

• Rk = revenue at the end of kth period = $5,310.

• Ck = operating cost at the end of kth period = $3,000.

• N = number of periods.

• M = re-sale value of equipment at end of project = $2,000.

• MARR = 10%, so i = 0.1.

• Adapting eq.(45), p.17, the PW is:

PW = −S +
N∑

k=1

(1 + i)−kRk −
N∑

k=1

(1 + i)−kCk + (1 + i)−NM (49)

= −10, 000 + 3.7908× 5, 310− 3.7908× 3, 000 + 0.6209× 2, 000 (50)

= −10, 000 + 20, 129.15− 11, 372.40 + 1, 241.80 (51)

= −$1.41 (52)
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• The project essentially breaks even (it loses $1.41), so it is marginally justified by PW.

§ Bonds:9 General formulation.10

• Bonds and stocks11 are both securities:12

Bonds: a loan to the firm. Stocks: equity or partial ownership of firm.

• F = face value (putative purchase cost) of bond.

• r = bond rate = interest paid by bond at end of each period.

• C = rF = coupon payment (periodic interest payment) at end of each period.

• M = market value of bond at maturity; usually equals F .

• i = discount rate13 at which the sum of all future cash flows from the bond

(coupons and principal) are equal to the price of the bond. May be the MARR.

• Note: r and i are different though they are both rates (percents) of a sum:

◦ r is the profit from the bond.

◦ i assesses the time-value of this profit.

• N = number of periods.

• Formula for calculating a bond’s price.14 This is the PW of the bond:

P = (1 + i)−NM +
N∑

k=1

(1 + i)−kC (53)

= (1 + i)−NM +
1− (1 + i)−N

i
C (54)

Example 6 Bonds.15

• F = face value = $5,000.

• r = bond rate = 8% paid annually at end of each year.

• Bond will be redeemed at face value after 20 years, so M = F and N = 20.

• (a) How much should be paid now to receive a yield of 10% per year on the investment?

C = 0.08× 5, 000 = 400. M = 5, 000. i = 0.1, so from eq.(54):

P = 1.1−205000 +
1− 1.1−20

0.1
400 (55)

= 0.1486× 5, 000 + 8.5135× 400 (56)

= 743.00 + 3, 405.43 (57)

= 4, 148.43 (58)

• (b) If this bond is purchased now for $4,600, what annual yield would the buyer receive?

We must numerically solve eq.(54) for i with P,M,N and C given:

4, 600 = (1 + i)−205000 +
1− (1 + i)−20

i
400 (59)

The result is about 8.9% per year, which is less than 10% because 4, 600 > 4, 148.43.

9Igrot hov. “Igrot” is written with alef.
10http://en.wikipedia.org/wiki/Bond (finance)
11miniot.
12niyarot erech.
13Discount rate: hivun. “hivun” is written with 2 vav’s.
14http://en.wikipedia.org/wiki/Bond valuation
15DeGarmo, p.148.
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Example 7 (DeGarmo, pp.168–170).

• Project definition:

◦ P = initial investment = $140,000.

◦ Rk = revenue at end of kth year = 2
3(45, 000 + 5, 000k).

◦ Ck = operating cost paid at end of kth year = $10,000.

◦ Mk = maintenance cost paid at end of kth year = $1,800.

◦ Tk = tax and insurance paid at end of kth year = 0.02P = 2, 800.

◦ i = MARR interest rate = 15%.

• Goal: recover investment with interest at the MARR after N = 10 years.

• Question: Should the project be launched?

• Solution:

◦ Evaluate the PW.

◦ Launch project if PW is positive.

◦ (What about risk and uncertainty?)

◦ Adapting the PW relation, eq.(45), p.17:

PW = −P +
N∑

k=1

(Rk − Ck −Mk − Tk)(1 + i)−k (60)

= −140, 000 +
10∑

k=1

(
2

3
(45, 000 + 5, 000k)− 10, 000− 1, 800− 2, 800

)
1.15−k (61)

= $10, 619 (62)

◦ The PW is positive so, ignoring risk and uncertainty, the project is justified.
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6 Future Worth Method

§ Primary source: DeGarmo et al, pp.149–150.

§ Basic idea of future worth (FW ):

• Evaluate equivalent worth of all cash flows (cost and revenue) at end of planning horizon,

based on an interest rate usually equal to the MARR.

• The FW is equivalent to the PW.

§ Basic Formula for calculating the FW.

• i = interest rate, e.g. MARR.

• Fk = cash flow in end of periods k = 0, 1, , . . . , N . Positive for revenue, negative for cost.

F0 = initial investment at start of the k = 1 period.

• N = number of periods.

• Basic relation, eq.(4), p.7, FW at end of planning horizon,

of revenue Fk at end of period k:

FWk = (1 + i)N−kFk (63)

• Formula for calculating the FW of revenue stream F0, F1, . . . , FN :

FW = (1 + i)NF0 + (1 + i)N−1F1 + · · ·+ (1 + i)N−kFk + · · ·+ (1 + i)0FN (64)

=
N∑

k=0

(1 + i)N−kFk (65)

• The relation between PW and FW, eq.(5), p.7:

PW = (1 + i)−NFW (66)

= (1 + i)−N
N∑

k=0

(1 + i)N−kFk (67)

=
N∑

k=0

(1 + i)−kFk (68)

which is eq.(45), p.17.

§ Eq.(66) shows that PW and FW are equivalent for ranking alternative projects, though numerically

they are different.
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Example 8

• F0 = $25, 000 = cost of new equipment.

• Fk = $8, 000 net revenue (after operating cost), k = 1, . . . , 5.

• i = 0.2 = 20% MARR.

• N = 5 = planning horizon.

• M = $5, 000 = market value of equipment at end of planning horizon.

• Adapting eq.(65), p.20, the FW is:

FW =
N∑

k=0

(1 + i)N−kFk +M (69)

= −(1.2)5 × 25, 000︸ ︷︷ ︸
step k=0

+
4∑

k=0

1.2k × 8, 000

︸ ︷︷ ︸
steps k=5, . . . , 1

+ 5, 000 (70)

= −1.25 × 25, 000 +
1.25 − 1

1.2− 1
× 8, 000 + 5, 000 (71)

= −62, 208 + 59, 532.80 + 5, 000 (72)

= 2, 324.80 (73)

• This project is profitable.

• The PW of this project is:

PW = (1 + i)−NFW (74)

= (1.2)−5 × 2, 324.80 (75)

= 934.28 (76)
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Part III

Implications of Uncertainty

§ Sources of uncertainty:

• The future is uncertain:

◦ Costs.

◦ Revenues.

◦ Interest rates.

◦ Technological innovations.

◦ Social and economic changes or upheavals.

• The present is uncertain:

◦ Capabilities.

◦ Goals.

◦ Opportunities.

• The past is uncertain:

◦ Biased or incomplete historical data.

◦ Limited understanding of past processes, successes and failures.

7 Uncertain Profit Rate, i, of a Single Investment, P

§ Background: section 4.1, p.7.



money-time02.tex Time-Value of Money 23

7.1 Uncertainty

§ Problem statement:

• P = investment now.

• i = projected profit rate, %/year.

• FW = future worth:

FW = (1 + i)NP (77)

• Questions:

◦ Is the investment worth it?

◦ Is the FW good enough? Is FW at least as large as FWc?

FW(i) ≥ FWc (78)

• Problem: i highly uncertain.

• Question: How to choose the value of FWc?

§ The info-gap.

• ĩ = known estimate of profit rate.

• i = unknown but constant true profit rate. Why is assumption of constancy important?

Eq.(77)

• s = known estimate of error of ĩ. i may err by s or more. Worst case not known.

• Fractional error: ∣∣∣∣∣
i− ĩ

s

∣∣∣∣∣ (79)

• Fractional error is bounded: ∣∣∣∣∣
i− ĩ

s

∣∣∣∣∣ ≤ h (80)

• The bound, h, is unknown: ∣∣∣∣∣
i− ĩ

s

∣∣∣∣∣ ≤ h, h ≥ 0 (81)

• Fractional-error info-gap model for uncertain profit rate:16

U(h) =
{
i :

∣∣∣∣∣
i− ĩ

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (82)

◦ Unbounded family of nested sets of i values.

◦ No known worst case.

◦ No known probability distribution.

◦ h is the horizon of uncertainty.

§ The question: Is the FW good enough? Is FW at least as large as a critical value FWc?

FW(i) ≥ FWc (83)

• Can we answer this question? No, because i is unknown.

• What (useful) question can we answer?

16There are other constraints on an interest rate, i, but we won’t worry about them now.
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7.2 Robustness

§ Robustness question (that we can answer): How large an error in ĩ can we tolerate?

§ Robustness function:

ĥ(FWc) = maximum tolerable uncertainty (84)

= maximum h such that FW(i) ≥ FWc for all i ∈ U(h) (85)

= max

{
h :

(
min
i∈U(h)

FW(i)

)
≥ FWc

}
(86)

§ Evaluating the robustness:

• Inner minimum:

m(h) = min
i∈U(h)

FW(i) (87)

• m(h) vs h:

◦ Decreasing function. Why?

◦ From eq.(77) (FW = (1 + i)NP ) and IGM in eq.(82), p.23: m(h) occurs at i = ĩ− sh:17

m(h) = (1 + ĩ− sh)NP (88)

• What is greatest tolerable horizon of uncertainty, h? Equate m(h) to FWc and solve for h:

(1 + ĩ− sh)NP = FWc =⇒ ĥ(FWc) =
1 + ĩ

s
− 1

s

(
FWc

P

)1/N

(89)

§ Properties of the robustness curve: (See fig. 3)

• Trade off: robustness up (good) only for FWc down (bad). (Pessimist’s theorem)

• Zeroing: no robustness of predicted FW : (1 + ĩ)NP .

-

6

0

↑
(Robustness)

(1 + ĩ)NP

ĥ(FWc)

Critical future worth, FWc

high
(demanding)

low
(modest)

Robustness

high

low

Figure 3: Robustness curve.

17This allows 1− i < 0 which may not be allowed or meaningful. However, we will see that 1− i ≥ 0 for all h ≤ ĥ.
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Figure 4: m(h) is inverse function of ĥ(FWc).

§ We understand from fig. 4 that m(h) is the inverse function of ĥ(FWc). Why?

§ This is important because sometimes we can only calculate m(h) but not its inverse: ĥ(FWc).
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7.3 Decision Making and the Innovation Dilemma

§ Decision making.

• Suppose your information is something like:

◦ Annual profits are typically about 12%, plus or minus 2% or 4% or more, or,

◦ Similar projects have had average profits of 12% with standard deviation of 3%,

but the future is often surprising.

• You might quantify this information with an info-gap model like eq.(82), p.23 with

ĩ = 0.12 and s = 0.03.

• You might then construct the robustness function like eq.(89), p.24.

• What FWc is credible? One with no less than “several” units of robustness.

• For instance, from eq.(89):

ĥ(FWc) ≈ 3 =⇒ FWc

P
≈ (1 + ĩ− 3s)N (90)

With ĩ = 0.12, s = 0.03, N = 10 years this is:

ĥ(FWc) = 3 =⇒ FWc

P
= (1 + 0.12− 3× 0.03)10 = 1.0310 = 1.34 (91)

• Compare with the nominal profit ratio predicted with the best estimate, eq.(77), p.23:

FWc(̃i)

P
= (1 + ĩ)N = (1.12)10 = 3.11 (92)

• Given the knowledge and the info-gap, a credible profit ratio is

1.34 (robustness = 3)

rather than

3.11 (robustness = 0).

§ Innovation dilemma.

• Choose between two projects or design concepts:

◦ State of the art, with standard projected profit and moderate uncertainty.

◦ New and innovative, with higher projected profit and higher uncertainty.

• For instance:

◦ SotA: ĩ = 0.03, s = 0.015, N = 10. So FW(̃i)/P = (1 + ĩ)10 = 1.34.

◦ Innov: ĩ = 0.05, s = 0.04, N = 10. So FW(̃i)/P = (1 + ĩ)10 = 1.63.

• The dilemma:

Innovation is predicted to be better, but it is more uncertain and thus may be worse.

• Robustness functions shown in fig. 5, p.27.

• Note trade off and zeroing.

• SotA more robust for FWc/P < 1.2. Note: ĥ(FWc/P = 1|SotA) = 2.

• Innov more robust for FWc/P > 1.2. Note: ĥ(FWc/P > 1.2|innov) < 1.

• Neither option looks reliably attractive.

• Generic analysis:

◦ Cost of robustness: slope: Greater cost of robustness for innovative option.

◦ Innovative option putatively better, but greater cost of robustness.

◦ Result: preference reversal.
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ĥ(FWc)

i = 0.03, s = 0.015

i = 0.05, s = 0.04 Innov

SotA

Figure 5: Illustration of
the innovation dilemma.
(Transp.)

8 Uncertain Constant Yearly Profit, A

§ Background: section 4.2, p.8.

8.1 Info-Gap on A

§ Future worth of constant profit:

• A = profit at end of each period. E.g. annuity; no initial investment.

• i = reinvest at profit rate i.

• N = number of periods.

• The future worth is (eq.(12), p.9):

FW =
(1 + i)N − 1

i
A (93)

§ Uncertainty: the constant end-of-period profit, A, is uncertain.

• Ã = known estimated profit.

• A = unknown but constant true profit.

• sA = error of estimate. A may be more or less that Ã. No known worst case.

• Fractional-error info-gap model:

U(h) =
{
A :

∣∣∣∣∣
A− Ã

sA

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (94)

§ Robust satisficing:

• Satisfy performance requirement:

FW(A) ≥ FWc (95)

• Maximize robustness to uncertainty.

§ Robustness:

ĥ(FWc) = max

{
h :

(
min

A∈U(h)
FW(A)

)
≥ FWc

}
(96)

§ Evaluating the robustness:

• Inner minimum:

m(h) = min
A∈U(h)

FW(A) (97)
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• m(h) vs h:

◦ Decreasing function. Why?

◦ Inverse of ĥ(FWc). Why?

◦ From eq.(93) (FW =
∑N

k=0(1 + i)N−kA = (1+i)N−1
i A), minimum occurs at A = Ã− sh:

m(h) =
(1 + i)N − 1

i
(Ã− sAh) (98)

• Equate to FWc and solve for h:

(1 + i)N − 1

i
(Ã− sAh) = FWc =⇒ ĥ(FWc) =

Ã

sA
− i

[(1 + i)N − 1]sA
FWc (99)

Or zero if this is negative.

• Zeroing and trade off. See fig. 6.

Figure 6: Trade off and zeroing of robustness. Figure 7: Low and High cost of robustness.

§ Consider the cost of robustness, determined by the slope of the robustness curve.

• Explain the meaning of cost of robustness. See fig. 7.

slope = − i

[(1 + i)N − 1]sA
= − 1

sA

(
N−1∑

n=0

(1 + i)n
)−1

(100)

Latter equality based on eq.(12), p.9.

• We see that:
∂|slope|
∂sA

< 0 (101)

This means that cost of robustness increases as uncertainty, sA, increases. Why?

• We see that:
∂|slope|

∂i
< 0 (102)

This means that cost of robustness increases as profit rate, i, increases. Why?

From eq.(93) (FW =
N∑
k
(1 + i)N−kA): large i magnifies A, thus magnifying uncertainty in A.

• Example. i = 0.15, sA = 0.05, N = 10. Thus:

slope =
0.15

(1.1510 − 1)0.05
= 0.98 (≈ 1) (103)

Thus decreasing FWc by 1 unit, increases the robustness by 1 unit.
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8.2 PDF of A

§ PDF: Probability Density Function.

§ Future worth of constant profit, eq.(12), p.9:

• A = profit (e.g. annuity) at end of each period.

• i = reinvest at profit rate i.

• N = number of periods.

• The future worth is:

FW(A) =
(1 + i)N − 1

i
A (104)

§ Requirement:

FW(A) ≥ FWc (105)

§ Problem:

• A is a random variable (but constant in time) with probability density function (pdf) p(A).

• Is the investment reliable?

§ Solution: Use probabilistic requirement.

• Probability of failure:

Pf = Prob(FW(A) < FWc) (106)

cA
A

( )p A

fP

Figure 8: Probability of failure, eq.(112).

• Probabilistic requirement:

Pf ≤ Pc (107)

§ Probability of failure for normal distribution: A ∼ N (µ, σ2)

• The pdf:

p(A) =
1√
2πσ

exp

(
−(A− µ)2

2σ2

)
(108)

• Probability of failure:

Pf = Prob(FW(A) < FWc) (109)

= Prob

(
(1 + i)N − 1

i
A ≤ FWc

)
(110)

= Prob

(
A ≤ i

(1 + i)N − 1
FWc

︸ ︷︷ ︸
Ac

)
(111)

= Prob (A ≤ Ac) (112)

= Prob

(
A− µ

σ
≤ Ac − µ

σ

)
(113)
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• A−µ
σ is a standard normal variable, N (0, 1), with cdf Φ(·).

• Thus:

Pf = Φ

(
Ac − µ

σ

)
(114)

= Φ

(
i

σ[(1 + i)N − 1]
FWc −

µ

σ

)
(115)

Example 9

• FWc = εFW(µ). E.g. ε = 0.5.

• From eqs.(104) and (115):

Pf = Φ

(
εµ

σ
− µ

σ

)
= Φ

(
−(1− ε)µ

σ

)
(116)

• From figs. 9 and 10 on p.30:

◦ Pf increases as critical future worth increases (e.g. as ε increases): FWc = εFW(µ).

◦ Pf increases as relative uncertainty increases: as µ/σ decreases.
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Figure 9: Probability of failure,
eq.116. (Transp.)

Figure 10: Probability of failure,
eq.116. (Transp.)
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8.3 Info-Gap on PDF of A

§ Future worth of constant profit, eq.(12), p.9:

• A = profit (e.g. annuity) at end of each period.

• i = reinvest at profit rate i.

• N = number of periods.

• The future worth is:

FW(A) =
(1 + i)N − 1

i
A (117)

§ Requirement:

FW(A) ≥ FWc (118)

§ First Problem:

• A is a random variable (but constant in time) with probability density function (pdf) p(A).

• Is the investment reliable?

§ Solution: Use probabilistic requirement.

• Probability of failure:

Pf = Prob(FW(A) < FWc) (119)

= Prob(A ≤ Ac) (120)

Ac =
i

(1 + i)N − 1
FWc, defined in eq.(111), p.29.

• Probabilistic requirement:

Pf ≤ Pc (121)

§ Second problem: pdf of A, p(A), is info-gap uncertain with info-gap model U(h).

§ Solution: Embed the probabilistic requirement in an info-gap analysis of robustness to uncertainty.

§ Robustness:

ĥ(Pc) = max

{
h :

(
max
p∈U(h)

Pf(p)

)
≤ Pc

}
(122)

Example 10 Normal distribution with uncertain mean.

§ Formulation:

• A ∼ N (µ, σ2).

• µ̃ = known estimated mean.

• µ = unknown true mean.

• sµ = error estimate. µ may err more or less than sµ.

• Info-gap model:

U(h) =
{
µ :

∣∣∣∣∣
µ− µ̃

sµ

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (123)
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cA
A

( )p A

fP

Figure 11: Probability of failure, eq.(120).

§ Evaluating the robustness:

• M(h) = inner maximum in eq.(122).

• M(h) occurs if p(A) is shifted maximally left (fig. 11, p.32), so µ = µ̃− sµh:

M(h) = max
p∈U(h)

Prob(A ≤ Ac|µ) (124)

= Prob

(
A− (µ̃− sµh)

σ
≤ Ac − (µ̃− sµh)

σ

∣∣∣∣∣ µ = µ̃− sµh

)
(125)

= Φ

(
Ac − (µ̃− sµh)

σ

)
(126)

= Φ

(
i

σ[(1 + i)N − 1]
FWc −

µ̃− sµh

σ

)
(127)

because
A−(µ̃−sµh)

σ is standard normal.

• Let FWc = εFW(µ̃) = ε (1+i)N−1
i µ̃. Eq.(127) is:

M(h) = Φ

(
εµ̃

σ
− µ̃− sµh

σ

)
(128)

= Φ

(
−(1− ε)µ̃− sµh

σ

)
(129)

• M(h) is the inverse of ĥ(Pc):

M(h) horizontally vs h vertically is equivalent to Pc horizontally vs ĥ(Pc) vertically.

See figs. 12 and 13.

• Zeroing: ĥ(Pc) = 0 when Pc = Pf(µ̃).

Estimated probability of failure, Pf(µ̃), increases as relative error, σ/µ, increases.

• Trade off: robustness decreases (gets worse) as Pc decreases (gets better).

• Cost of robustness: increase in Pc required to obtain given increase in ĥ.

Cost of robustness increases as σ/µ and σ/sµ increase at low Pc; fig. 13.

• Pf(µ̃) and cost of robustness change in reverse directions as σ/µ changes.

◦ This causes curve-crossing and preference-reversal.

◦ At small Pc (fig. 13): robustness increases as relative error, σ/µ, falls (as µ
σ rises.)

◦ At large Pc (fig. 12): preference reversal at Pc = 0.5.
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Figure 12: Robustness
function, based on eq.129.
(Transp.)

Figure 13: Robustness
function, based on eq.129.
(Transp.)

9 Uncertain Return, i, on Uncertain Constant Yearly Profit, A

§ Background: section 4.2, p. 8.

§ Future worth of constant profit, eq.(12), p.9:

• A = profit at end of each period.

• i = reinvest at profit rate i.

• N = number of periods.

• The future worth, assuming that i is the same in each period, is:

FW(A, i) =
N−1∑

k=0

(1 + i)N−kA =
(1 + i)N − 1

i
A (130)

§ Performance requirement:

FW(A, i) ≥ FWc (131)

§ Uncertainty: A and i are both uncertain and constant, and we know i ≥ 0 and A ≥ 0 (or we can

prevent i < 0 or A ≤ 0, a loss).

Fractional-error info-gap model:

U(h) =
{
A, i : A ≥ 0,

∣∣∣∣∣
A− Ã

sA

∣∣∣∣∣ ≤ h, i ≥ 0,

∣∣∣∣∣
i− ĩ

si

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (132)

§ Robustness:

ĥ(FWc) = max

{
h :

(
min

A,i∈U(h)
FW(A, i)

)
≥ FWc

}
(133)

§ Evaluating the robustness:

• Inner minimum:

m(h) = min
A,i∈U(h)

FW(A, i) (134)

• m(h) vs h:

◦ Decreasing function.

◦ Recall eqs.(11) and (12), p.9:

F =
N−1∑

n=0

(1 + i)nA =
(1 + i)N − 1

i
A (135)
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◦ Inverse of ĥ(FWc).

◦ From eqs.(130), (132) and (135), the inner minimum, m(h), occurs at:

A = (Ã− sAh)
+
and i = max(0, ĩ− sih) = (̃i− sih)

+
.

◦ Thus:

m(h) =





(1 + ĩ− sih)
N − 1

ĩ− sih
(Ã− sAh)

+
, for h < ĩ/si

N(Ã− sAh)
+
, for h ≥ ĩ/si

(136)
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ĩ = 0.05

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
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Figure 14: Robustness
function, based on eq.136.
(Transp.)

Figure 15: Robustness
function, based on eq.136.
(Transp.)

§ Robustness functions, fig. 14. N = 10, Ã = 1, sA = 0.3.

• Blue: ĩ = 0.03, si = 0.01. (Lower projected return; lower uncertainty.)

• Green: ĩ = 0.05, si = 0.04. (Higher projected return; higher uncertainty.)

• Similar, but mild preference reversal:

Lower return (̃i = 0.03) and lower uncertainty (si = 0.01) roughly equivalent to

Higher return (̃i = 0.05) and higher uncertainty (si = 0.04)

§ Robustness functions, fig. 15. N = 10.

• Blue: ĩ = 0.03, si = 0.01, Ã = 1, sA = 0.3. (Same a blue in fig. 14.)

• Green: ĩ = 0.05, si = 0.04, Ã = 1, sA = 0.3. (Same a green in fig. 14.)

• Red: ĩ = 0.05, si = 0.04, Ã = 1.5, sA = 0.5.

• Strong preference reversal between red and blue or green.

§ Question:

• The robustness curves in figs. 14, 15, p.34 are decreasing vs FWc.

• The robustness curves in figs. 12, 13, p.33 are increasing vs Pc.

• Why the difference?

• Compare ĥ(Pc) in eq.(122), p.31, with ĥ(FWc) in eq.(133), p.33:

ĥ(Pc) = max

{
h :

(
max
p∈U(h)

Pf(p)

)
≤ Pc

}
(137)

ĥ(FWc) = max

{
h :

(
min

A,i∈U(h)
FW(A, i)

)
≥ FWc

}
(138)
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10 Present and Future Worth Methods
with Uncertainty

§ Background: section 5.

§ We will explore a few further examples and then address the question: are PW and FW preferences

the same?

10.1 Example 5, p.17, Re-Visited

Example 11 Example 5, p.17, re-visited.

§ Does the Present Worth method justify the following project,

given uncertainty in revenue, cost and re-sale value?

• S = Initial cost of the project = $10,000.

• R̃ = estimated revenue at the end of kth period = $5,310.

• C̃ = estimated operating cost at the end of kth period = $3,000.

• M̃ = estimated re-sale value of equipment at end of project = $2,000.

• N = number of periods = 10.

• MARR = 10%, so i = 0.1.

• From eq.(49), p.17, the PW is:

PW (R,C,M) = −S +
N∑

k=1

(1 + i)−kRk −
N∑

k=1

(1 + i)−kCk + (1 + i)−NM (139)

• Fractional-error info-gap model for R, C and M :

U(h) =
{
R,C,M :

∣∣∣∣∣
Rk − R̃

sR,k

∣∣∣∣∣ ≤ h,

∣∣∣∣∣
Ck − C̃

sC,k

∣∣∣∣∣ ≤ h, k = 1, . . . , N,

∣∣∣∣∣
M − M̃

sM

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (140)

Consider expanding uncertainty envelopes for R and C:

sx,k = (1 + ε)k−1sx, x = R or C (141)

E.g., ε = 0.1. Note that ε is like a discount rate on future uncertainty.

• Performance requirement:

PW(R,C,M) ≥ PWc (142)

• Robustness: greatest tolerable uncertainty:

ĥ(PWc) = max

{
h :

(
min

R,C,M∈U(h)
PW(R,C,M)

)
≥ PWc

}
(143)

• The inner minimum, m(h), occurs at small Rk and M and large Ck:

Rk = R̃− sR,kh = R̃− (1 + ε)k−1sRh (144)

Ck = C̃ + sC,kh = C̃ + (1 + ε)k−1sCh (145)

M = M̃ − sMh (146)

Thus m(h) equals:

m(h) = −S +
N∑

k=1

(1 + i)−k
[
R̃− (1 + ε)k−1sRh− C̃ − (1 + ε)k−1sCh

]
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+(1 + i)−N (M̃ − sMh) (147)

= −S + (R̃− C̃)
N∑

k=1

(1 + i)−k + (1 + i)−NM̃

︸ ︷︷ ︸
PW (R̃,C̃,M̃)

−sR + sc
1 + ε

h
N∑

k=1

(
1 + ε

1 + i

)k

︸ ︷︷ ︸
Q

− (1 + i)−NsMh (148)

= PW(R̃, C̃, M̃)−
(
sR + sc
1 + ε

Q+ (1 + i)−NsM

)
h (149)

Evaluate Q with eq.(7), p.9, unless ε = i in which case Q = N .

Question: m(0) = PW(R̃, C̃, M̃). Why? What does this mean?

Question: dm(h)/dh < 0. Why? What does this mean?

• Equate m(h) to PWc and solve for h to obtain the robustness:

m(h) = PWc =⇒ ĥ(PWc) =
PW(R̃, C̃, M̃)− PWc
sR+sc
1+ε Q+ (1 + i)−NsM

(150)

See fig. 16, p.37

• Horizontal intercept of the robustness curve. From eq.(52), p.17, we know:

PW(R̃, C̃, M̃) = −$1.41 (151)

◦ The project nominally almost breaks even.

◦ Zeroing: no robustness at predicted outcome.

• Slope of the robustness curve is:

Slope = −
(
sR + sc
1 + ε

Q+ sM

)−1

(152)

Let ε = i = 0.1 so Q = N = 10. sR = 0.05R̃, sC = 0.03 C̃, sM = 0.03M̃ . Thus:

Slope = −
(
0.05× 5, 310 + 0.03× 3, 000

1.1
10 + 0.03× 2, 000

)−1

= −1/3, 291.82 (153)

Cost of robustness: PWc must be reduced by $3,291.82 in order to increase ĥ by 1 unit.

• Decision making. We need “several” units of robustness, say ĥ(PWc) ≈ 3 to 5. E.g.

ĥ(PWc) = 4 =⇒ PWc = −$13, 168.69 (154)

Nominal PW = −$1.41.

Reliable PW = −$13,168.69.

Thus the incomes, Rk and M , do not reliably cover the costs, Ck and S.
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-

6

0
PW(R̃, C̃, M̃)

= −$1.41

ĥ(PWc) Slope = −1/D
= −1/3, 291.82

Critical present worth, PWc

Robustness

Figure 16: Robustness curve, eq.150, p.36, of example 11.

10.2 Example 7, p.19, Re-Visited

Example 12 Example 7, p.19, re-visited.

§ Does the Present Worth method justify the following project,

given uncertainty in revenue, operating and maintenance costs?

• Project definition:

◦ P = initial investment = $140,000.

◦ R̃k = estimated revenue at end of kth year = 2
3(45, 000 + 5, 000k).

◦ C̃= estimated operating cost paid at end of kth year = $10,000.

◦ M̃ = estimated maintenance cost paid at end of kth year = $1,800.

◦ T = tax and insurance paid at end of kth year = 0.02P = 2, 800.

◦ i = 0.15 representing a MARR interest rate of 15%.

◦ N = 10 years.

• From eq.(60), p.19, the PW is:

PW (R,C,M) = −P +
N∑

k=1

(Rk − Ck −Mk − Tk)(1 + i)−k (155)

• Fractional-error info-gap model for R, C and M :

U(h) =
{
R,C,M :

∣∣∣∣∣
Rk − R̃k

sR,k

∣∣∣∣∣ ≤ h,

∣∣∣∣∣
Ck − C̃

sC,k

∣∣∣∣∣ ≤ h,

∣∣∣∣∣
Mk − M̃

sM,k

∣∣∣∣∣ ≤ h, k = 1, . . . , N

}
, h ≥ 0 (156)

Consider expanding uncertainty envelopes for R and C:

sx,k = (1 + ε)k−1sx, x = R, C, or M (157)

E.g., ε = 0.15.

• Performance requirement:

PW(R,C,M) ≥ PWc (158)

• Robustness: greatest tolerable uncertainty:

ĥ(PWc) = max

{
h :

(
min

R,C,M∈U(h)
PW(R,C,M)

)
≥ PWc

}
(159)

• The inner minimum, m(h), occurs at small Rk and large Ck and Mk:

Rk = R̃k − sR,kh = R̃k − (1 + ε)k−1sRh (160)

Ck = C̃ + sC,kh = C̃ + (1 + ε)k−1sCh (161)

Mk = M̃ + sM,kh = M̃ + (1 + ε)k−1sMh (162)
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Thus m(h) equals:

m(h) = −P (163)

+
N∑

k=1

(1 + i)−k
[
R̃k − (1 + ε)k−1sRh− C̃ − (1 + ε)k−1sCh− M̃ − (1 + ε)k−1sMh− Tk

]

= −P +
N∑

k=1

(1 + i)−kR̃k − ( C̃ + M̃ + T )
N∑

k=1

(1 + i)−k

︸ ︷︷ ︸
PW (R̃,C̃,M̃)

−sR + sC + sM
1 + ε

h
N∑

k=1

(
1 + ε

1 + i

)k

︸ ︷︷ ︸
Q

(164)

= PW(R̃, C̃, M̃)− sR + sC + sM
1 + ε

Qh (165)

Evaluate Q with eq.(7), p.9, unless ε = i in which case Q = N .

• Equate m(h) to PWc and solve for h to obtain the robustness:

m(h) = PWc =⇒ ĥ(PWc) =
PW(R̃, C̃, M̃)− PWc

sR+sC+sM
1+ε Q

(166)

Or zero if this is negative. See fig. 17, p.38.

-
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0
PW(R̃, C̃, M̃)

= $10, 619

ĥ(PWc) Slope = −1/D
= −1/17, 571.01

Critical present worth, PWc

Robustness

Figure 17: Robustness curve, eq.166, p.38, of example 12.

• Horizontal intercept of the robustness curve. From eq.(62), p.19, we know:

PW(R̃, C̃, M̃) = $10, 619. (167)

◦ The project nominally earns $10,619.

◦ Zeroing: no robustness at predicted outcome.

• Slope of the robustness curve is:

Slope = −
(
sR + sC + sM

1 + ε
Q

)−1

(168)

Let ε = i = 0.15 so Q = N = 10. sR = 0.05R̃1, sC = 0.03 C̃, sM = 0.03M̃ . Thus:

Slope = −
(
0.05× (2/3)× 50, 000 + 0.03× 10, 000 + 0.03× 1, 800

1.15
10

)−1

= −1/17, 571.01 (169)

Cost of robustness: PWc must be reduced by $17,571.01 in order to increase ĥ by 1 unit.

• Decision making. We need “several” units of robustness, say ĥ(PWc) ≈ 3 to 5. E.g.

ĥ(PWc) = 4 =⇒ PWc = −$59, 665.04 (170)
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Nominal PW = +$10,619.

Reliable PW = −$59,665.04.

Thus the incomes, Rk, do not cover the costs, Ck, Tk, Mk, and P .

• Compare examples 11 and 12, fig. 18, p.39.

◦ Example 11: nominally worse but lower cost of robustness.

◦ Example 12: nominally better but higher cost of robustness.

◦ Preference reversal at PWc = −$2, 450:

Example 12 preferred for PWc > −$2, 450, but robustness very low.

Example 11 preferred for PWc < −$2, 450.
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Figure 18: Robustness
curves for examples 11 and
12, illustrating preference
reversal. (Transp.)
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10.3 Example 8, p.21, Re-Visited

Example 13 Example 8, p.21, re-visited (perhaps skip this example).

§ Problem: Is the following investment worthwhile,

given uncertainty in attaining the MARR in each period?

• F0 = −$25, 000 = cost of new equipment.

• F = $8, 000 net revenue (after operating cost), k = 1, . . . , 5.

• N = 5 = planning horizon.

• M = $5, 000 = market value of equipment at end of planning horizon.

• ĩ = 0.2 = 20% is the anticipated MARR.

• From eq.(69), p.21, the anticipated FW is:

F̃W = M +
N∑

k=0

(1 + ĩ)N−kFk (171)

where Fk = F for k > 0.

• We desire ĩ = 0.2, but we may not attain this high rate of return each period.

• Define a new discount rate in the kth period as:

βk = (1 + i)N−k, k = 0, . . . , N (172)

where i may vary from period to period.

The anticipated value is:

β̃k = (1 + ĩ)N−k, k = 0, . . . , N (173)

• Thus the anticipated and actual FW ’s are:

F̃W = M +
N∑

k=0

β̃kFk (174)

FW = M +
N∑

k=0

βkFk (175)

• A fractional-error info-gap model for the discount rates, treating the uncertainty separately in

each period, is:

U(h) =
{
β : βk ≥ 0,

∣∣∣∣∣
βk − β̃k

sk

∣∣∣∣∣ ≤ h, k = 0, . . . , N

}
, h ≥ 0 (176)

◦ The uncertainty weights, sk, may increase over time.

◦ βk ≥ 0 because i ≥ −1.

◦ Treating the uncertainty separately in each period is a strong approximation, and really

not justified. From eq.(26), p.13, we see that βk is related to βk−1. The full analysis is much more

complicated.

• Performance requirement:

FW(β) ≥ FWc (177)

• Robustness:

ĥ(FWc) = max

{
h :

(
min

β∈U(h)
FW(β)

)
≥ FWc

}
(178)

• Evaluate the inner minimum, m(h): inverse of the robustness. Occurs at:

β0 = β̃0 + s0h because F0 < 0, βk = max[0, β̃k − skh], k = 1, . . . , N (179)
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So:

m(h) = M + (β̃0 + s0h)F0 + F
N∑

k=1

max[0, β̃k − skh] (180)

Define:

h1 = min
1≤k≤N

β̃k

sk
(181)

For h ≤ h1 we can write eq.(180) as:

m(h) = M +
N∑

k=0

β̃kFk

︸ ︷︷ ︸
F̃W

− h

(
−s0F0 + F

N∑

k=1

sk

)

︸ ︷︷ ︸
FW⋆

(182)

= F̃W − hFW⋆ (183)

Note that FW⋆ > 0.

• Equate eq.(183) to FWc and solve for h to obtain part of the robustness curve:

ĥ(FWc) =
F̃W − FWc

FW⋆ , F̃W − h1FW
⋆ ≤ FWc ≤ F̃W (184)

• Note possibility of crossing robustness curves and preference reversal.

• For h > h1, successive terms in eq.(180) drop out and the slope of the robustness curve changes.

• Question: How can we plot the entire robustness curve, without the constraint h ≤ h1?
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10.4 Info-Gap on A: Are PW and FW Robust Preferences the Same?

§ Continue example of section 8.1, p.27 (constant yearly profit), where the FW, eq.(93) p.27, is:

FW =
(1 + i)N − 1

i
A (185)

and the uncertainty is only in A, eq.(94) p.27, is:

U(h) =
{
A :

∣∣∣∣∣
A− Ã

sA

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (186)

and the performance requirement, eq.(95) p.27, is:

FW(A) ≥ FWc (187)

§ PW and FW are related by eq.(66), p.20:

PW(A) = (1 + i)−NFW(A) (188)

§ Thus, from eqs.(187) and (188), the performance requirement for PW is:

PW(A) ≥ PWc (189)

where:

PWc = (1 + i)−NFWc (190)

§ The robustness for the FW criterion is ĥfw(FWc), eq.(96) p.27, is:

ĥfw(FWc) = max

{
h :

(
min

A∈U(h)
FW(A)

)
≥ FWc

}
(191)

§ The robustness for the PW criterion is ĥpw(PWc), is defined analogously:

ĥpw(PWc) = max

{
h :

(
min

A∈U(h)
PW(A)

)
≥ PWc

}
(192)

Employing eqs.(188) and (190) we obtain:

ĥpw(PWc) = max

{
h :

(
min

A∈U(h)
(1 + i)−NFW(A)

)
≥ (1 + i)−NFWc

}
(193)

= ĥfw(FWc) (194)

because (1 + i)−N cancels out in eq.(193). The values differ, but the robustnesses are equal!

§ Consider two different configurations, k = 1, 2, whose robustness functions are ĥpw,k(PWc) and

ĥfw,k(FWc).

• From eq.(194) we see that:

ĥpw,1(PWc) > ĥpw,2(PWc) if and only if ĥfw,1(FWc) > ĥfw,2(FWc) (195)

• Thus FW and PW robust preferences between the configurations are the same

when A is the only uncertainty.
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10.5 Info-Gap on i: Are PW and FW Robust Preferences the Same?

§ Continue example of section 8.1, p.27 (constant yearly profit), where the FW, eq.(93) p.27, is:

FW =
(1 + i)N − 1

i
A (196)

where i is constant but uncertain:

U(h) =
{
i : i ≥ −1,

∣∣∣∣∣
i− ĩ

si

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (197)

and the performance requirement, eq.(95) p.27, is:

FW(i) ≥ FWc (198)

§ PW and FW are related by eq.(66), p.20:

PW(i) = (1 + i)−NFW(i) (199)

§ Thus, from eqs.(198) and (199), the performance requirement for PW is

PW(i) ≥ PWc (200)

where:

PWc = (1 + i)−NFWc (201)

However, because i is uncertain we will write the performance requirement as:

PW(i)− (1 + i)−NFWc ≥ 0 (202)

§ The robustness for the FW criterion is:

ĥfw(FWc) = max

{
h :

(
min
i∈U(h)

FW(i)

)
≥ FWc

}
(203)

We re-write this as:

ĥfw(FWc) = max

{
h :

(
min
i∈U(h)

(FW(i)− FWc)

)
≥ 0

}
(204)

Let mfw(h) denote the inner minimum, which is the inverse of ĥfw(FWc).

§ The robustness for the PW criterion is:

ĥpw(FWc) = max

{
h :

(
min
i∈U(h)

(
PW(i)− (1 + i)−NFWc

))
≥ 0

}
(205)

= max

{
h :

(
min
i∈U(h)

(1 + i)−N (FW(i)− FWc)

)
≥ 0

}
(206)

• Let mpw(h) denote the inner minimum, which is the inverse of ĥpw(FWc).

• Because (1 + i)−N > 0, we can conclude that:

mfw(h) ≥ 0 if and only if mpw(h) ≥ 0 (207)
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• Define Hfw as the set of h values in eq.(204) whose maximum is ĥfw(FWc).

• Define Hpw as the set of h values in eq.(206) whose maximum is ĥpw(FWc).

• Eq.(207) implies that:

h ∈ Hfw if and only if h ∈ Hpw (208)

which implies that:

maxHfw = maxHpw (209)

which implies that:

ĥfw(FWc) = ĥpw(FWc) (210)

§ Thus FW and PW robust preferences between the configurations are the same

when i is the only uncertainty.

§ A different proof of eq.(210) is (we might skip this proof):

• From the definition of ĥfw, eq.(204), we conclude that:

mfw(ĥfw) ≥ 0 (211)

and this implies, from eq.(207), that:

mpw(ĥfw) ≥ 0 (212)

From this and from the definition of ĥpw, eq.(206), we conclude that:

ĥpw ≥ ĥfw (213)

• Likewise, from the definition of ĥpw, eq.(206), we conclude that:

mpw(ĥpw) ≥ 0 (214)

and this implies, from eq.(207), that:

mfw(ĥpw) ≥ 0 (215)

From this and from the definition of ĥfw, eq.(204), we conclude that:

ĥfw ≥ ĥpw (216)

• Combining eqs.(213) and (216) we find:

ĥfw(FWc) = ĥpw(FWc) (217)

• QED.
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11 Strategic Uncertainty

§ Strategic interaction:

• Competition between protagonists.

• Willful goal-oriented behavior.

• Knowledge of each other.

• Potential for deliberate interference or deception.

11.1 Preliminary (Non-Strategic) Example: 1 Allocation

§ 1 allocation:

• Allocate positive quantity F0 at time step t = 0.

• This results in future income F1 at time step t = 1:

F1 = bF0 (218)

◦ Eq.(218) is the system model.

◦ b is the “budget effectiveness”.

◦ b̃ is the estimated value of b, where b is uncertain.

§ A fractional-error info-gap model for uncertainty in b:

U(h) =
{
b :

∣∣∣∣∣
b− b̃

sb

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (219)

§ Performance requirement:

F1 ≥ F1c (220)

§ Definition of robustness of allocation F0:

ĥ(F1c, F0) = max

{
h :

(
min

b∈U(h)
F1

)
≥ F1c

}
(221)

§ Evaluation of robustness:

• m(h) denotes inner minimum in eq.(221).

• m(h) is the inverse of ĥ(F1c, F0) thought of as a function of F1c.

• F0 > 0, so m(h) occurs at b = b̃− sbh:

m(h) = (b̃− sbh)F0 ≥ F1c =⇒ ĥ(F1c, F0) =
b̃F0 − F1c

F0sb
(222)

or zero if this is negative. See fig. 19, p.46.

• Zeroing: no robustness when F1c = F1(b̃).

• Trade off: robustness increases as requirement, F1c, becomes less demanding (smaller).

• Preference reversal and its dilemma:

◦ Consider two options:

(b̃F0)1 < (b̃F0)2 Option 2 purportedly better (223)(
b̃

sb

)

1

>

(
b̃

sb

)

2

Option 2 more uncertain (224)

◦ Eq.(223) compares the horizontal intercepts at ĥ = 0.

◦ Eq.(224) compares the vertical intercepts at F1c = 0.

◦ Robustness curves cross one another: potential preference reversal; fig. 20, p.46.
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Figure 19: Robustness curve,
eq.(222).

Figure 20: Preference reversal,
eqs.(223) and (224).

11.2 1 Allocation with Strategic Uncertainty

§ Continuation of example in section 11.1.

§ Strategic interaction:

• Competition between protagonists.

• Willful goal-oriented behavior.

• Knowledge of each other.

• Potential for deliberate interference or deception.

§ 1 allocation:

• Invest positive quantity F0 at time step t = 0.

• This results in future income F1 at time step t = 1:

F1 = bF0 (225)

◦ Eq.(225) is the system model.

◦ b is the “budget effectiveness” which is uncertain.

§ Budget effectiveness:

• “Our” budget effectiveness is influenced by a choice, c, made by “them”:

b(c) = b̃0 − αc (226)

where α > 0. Suppose that only c is uncertain.

• α is the “aggressiveness” of their choice.

§ A fractional-error info-gap model for uncertainty in c:

U(h) =
{
c :

∣∣∣∣
c− c̃

sc

∣∣∣∣ ≤ h

}
, h ≥ 0 (227)

§ Performance requirement:

F1 ≥ F1c (228)

§ Definition of robustness of allocation F0:

ĥ(F1c, F0) = max

{
h :

(
min

c∈U(h)
F1

)
≥ F1c

}
(229)
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§ Evaluation of robustness:

• m(h) denotes inner minimum in eq.(229): the inverse of ĥ(F1c, F0) as function of F1c.

• F0 > 0 and α > 0, so m(h) occurs at c = c̃+ sch:

m(h) =
[
b̃0 − α(c̃+ sch)

]
F0 ≥ F1c =⇒ (230)

ĥ(F1c, F0) =
(b̃0 − αc̃)F0 − F1c

αscF0
(231)

=
F1(c̃)− F1c

αscF0
(232)

or zero if this is negative.

• Zeroing (fig. 21): no robustness when F1c = F1(c̃).

• Trade off (fig. 21): robustness increases as requirement, F1c, becomes less demanding (smaller).
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Figure 21: Robustness curve,
eq.(231).

Figure 22: Robustness curve,
eq.(231).

§ Preference reversal (fig. 22):

• Consider two options:

[(b̃0 − αc̃)F0]1 < [(b̃0 − αc̃)F0]2 Option 2 purportedly better (233)(
b̃0 − αc̃

αsc

)

1

>

(
b̃0 − αc̃

αsc

)

2

Option 2 more uncertain (234)

• A possible interpretation. “They” in option 2 are:

◦ Purportedly less aggressive: α2 < α1 =⇒ eq.(233).

◦ Much less well known to “us”: sc2 ≫ sc1 =⇒ eq.(234).

• Robustness curves cross one another: potential for preference reversal.
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11.3 2 Allocations with Strategic Uncertainty

§ System model. 2 non-negative allocations, F01 and F02, at time step 0:

F11 = b1F01 (235)

F12 = b2F02 (236)

§ Budget constraint:

F01 + F02 = Fmax, F0k ≥ 0, k = 1, 2 (237)

§ Performance requirement:

F11 + F12 ≥ F1c (238)

§ Budget effectiveness:

• “Our” budget effectiveness is influenced by choices, ck, made by “them”:

bk(c) = b̃0k − αkck, k = 1, 2 (239)

where αk > 0. Suppose that only c1 and c2 are uncertain, with estimates c̃1 and c̃2.

§ Purported optimal allocation, assuming no uncertainty:

• Aim to maximize F11 + F12.

• Put all funds on better anticipated investment:

If: bk(c̃k) > bj(c̃j) then: F0k = Fmax and F0j = 0 (240)

§ A fractional-error info-gap model for uncertainty in c:

U(h) =
{
c :

∣∣∣∣
ck − c̃k

sk

∣∣∣∣ ≤ h, k = 1, 2

}
, h ≥ 0 (241)

§ Definition of robustness of allocation vector F0:

ĥ(F1c, F0) = max

{
h :

(
min

c∈U(h)
(F11 + F12)

)
≥ F1c

}
(242)

§ Evaluation of robustness:

• m(h) denotes inner minimum in eq.(242): the inverse of ĥ(F1c, F0) as function of F1c.

• F0k ≥ 0 and αk > 0, so m(h) occurs at ck = c̃k + skh, k = 1, 2:

m(h) =
2∑

k=1

[
b̃0k − αk(c̃k + skh)

]
F0k (243)

=
2∑

k=1

[
b̃0k − αk c̃k)

]
F0k

︸ ︷︷ ︸
F1(c̃)=b̃TF0

−h
2∑

k=1

αkskF0k

︸ ︷︷ ︸
σTF0

(244)

= F1(c̃)− hσTF0 (245)

which defines the vectors b̃, F0 and σ.
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• Equate m(h) to F1c and solve for h to obtain the robustness:

m(h) = F1c =⇒ ĥ(F1c, F0) =
F1(c̃)− F1c

σTF0
(246)

=
b̃
T
F0 − F1c

σTF0
(247)

or zero if this is negative.

• Zeroing (fig. 23): no robustness when F1c = F1(c̃).

• Trade off (fig. 23): robustness increases as requirement, F1c, becomes less demanding (smaller).
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Figure 23: Robustness curve,
eq.(247).

Figure 24: Robustness curves for ex-
treme allocations eqs.(248), (249).

§ Two extreme allocations, the purported best and worst allocations:

• Suppose b1(c̃1) > b2(c̃2), so:

◦ F01 = Fmax, F02 = 0 is purportedly best:

ĥ(F01 = Fmax) =
b1(c̃1)Fmax − F1c

σ1Fmax
(248)

◦ F01 = 0, F02 = Fmax is purportedly worst:

ĥ(F02 = Fmax) =
b2(c̃2)Fmax − F1c

σ2Fmax
(249)

• Also suppose:
b̃1
σ1

<
b̃2
σ2

so first option is more uncertain.

• Preference reversal, fig. 24:

The purported best allocation is less robust than

the purported worst allocation for some values of F1c.

• The most robust option is still allocation to only one asset, but not necessarily to the nominally

optimal asset.
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11.4 Asymmetric Information and Strategic Uncertainty: Employment Offer

§ Employer’s problem:

• Employer wants to hire an employee.

• Employer must offer a salary to the employee, who can refuse the offer. No negotiation.

• Employer does not know either the true economic value, or the refusal price, of the employee.

§ Employer’s NPV (Net Present Value):

• C = pay at end of each of N periods offered to employee.

• A = uncertain income, at end of each of N periods, to employer from employee’s work.

• Employer’s NPV, adapting eq.(45), p.17:

PW =
N∑

k=1

(1 + i)−k(A− C) (250)

=
1− (1 + i)−N

i︸ ︷︷ ︸
I

(A− C) (251)

where eq.(251) employs eq.(9), p.9.

• The employer’s PW requirement:

PW ≥ PWc (252)

§ Uncertainty about A:

• Asymmetric information:

◦ The employee knows things about himself that the employer does not know.

◦ The prospective employee states that his work will bring in Ã each period.

◦ The employee thinks this is an over-estimate but does not know by how much.

◦ The employer adopts an asymmetric fractional-error info-gap model:

U(h) =
{
A : 0 ≤ Ã−A

Ã
≤ h

}
, h ≥ 0 (253)

Note asymmetrical uncertainty resulting from asymmetrical information.

§ Employer’s offered contract and employee’s potential refusal:

• The employer will offer to pay the employee C per period.

• The employee will refuse if this is less that his refusal cost, Cr.

• The employer wants to choose C so probability of refusal is less than ε, where ε ≤ 1
2 .

• The employer doesn’t know employee’s value of Cr and only has a guess of pdf of Cr.

• Once again: asymmetric information.

• The employer’s estimate of the pdf of Cr is p̃(Cr), which is N (µ, σ2).

• Employer chooses µ < Ã to reflect asymmetrical information.

• The employer’s info-gap model for uncertainty in this pdf is:

V(h) =
{
p(Cr) : p(Cr) ≥ 0,

∫ ∞

−∞
p(Cr) dCr = 1,

∣∣∣∣
p(Cr)− p̃(Cr)

p̃(Cr)

∣∣∣∣ ≤ h

}
, h ≥ 0 (254)

• The probability of refusal by the employee, of the offered value of C, is (see fig. 25, p.51):

Pref(C|p) = Prob(Cr ≥ C) =

∫ ∞

C
p(Cr) dCr (255)

• The employer’s requirement regarding employee refusal, where ε ≤ 1
2 , is:
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Figure 25: Probability of refusal by the employee, eq.(255).

Pref(C|p) ≤ ε (256)

§ Definition of the robustness:

• Overall robustness:

ĥ(C,PWc, ε) = max

{
h :

(
min

A∈U(h)
PW(C,A)

)
≥ PWc,

(
max
p∈V(h)

Pref(C|p)
)

≤ ε

}
(257)

• This can be expressed in terms of two sub-robustnesses.

• Robustness of PW :

ĥpw(C,PWc) = max

{
h :

(
min

A∈U(h)
PW(C,A)

)
≥ PWc

}
(258)

• Robustness of employee refusal:

ĥref(C, ε) = max

{
h :

(
max
p∈V(h)

Pref(C|p)
)

≤ ε

}
(259)

• The overall robustness can be expressed:

ĥ(C,PWc, ε) = min
[
ĥpw(C,PWc), ĥref(C, ε)

]
(260)

• Why minimum in eq.(260)?

• Both performance requirements, eqs.(252) and (256), must be satisfied, so the overall robustness

is the lower of the two sub-robustnesses.

§ Evaluating ĥpw(C,PWc):

• Let mpw(h) denote the inner minimum in eq.(258).

• mpw(h) is the inverse of ĥpw(C,PWc) thought of as a function of PWc.

• Eq.(251): PW = (A − C)I. Thus mpw(h) occurs for A = (1 − h)Ã (I is defined in eq.(251),

p.50):

mpw(h) =
[
(1− h)Ã− C

]
I ≥ PWc =⇒ (261)

ĥpw(C,PWc) =
(Ã− C)I − PWc

ÃI
(262)

=
PW(Ã)− PWc

ÃI
(263)

or zero if this is negative.

§ Evaluating ĥref(C, ε):

• Let mref(h) denote the inner maximum in eq.(259).

• mref(h) is the inverse of ĥref(C, ε) thought of as a function of ε.

• Recall: ε ≤ 1
2 .
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• Thus, we must choose C to be no less than median of p̃(Cr) because we require (see fig. 26,

p.52):

Pref(C|p̃) =
∫ ∞

C
p̃(Cr) dCr ≤ ε ≤ 1

2
(264)

Figure 26: Probability of refusal by the employee, eq.(255).

• Eq.(255): Pref(C|p) = Prob(Cr ≥ C) =
∫∞
C p(Cr) dCr. For h ≤ 1, mref(h) occurs for:

p(Cr) =





(1 + h)p̃(Cr), Cr ≥ C

(1− h)p̃(Cr), for part of Cr < C to normalize p(Cr)

p̃(Cr), for remainder of Cr < C

(265)

Why don’t we care what “part of Cr < C” in the middle line of eq.(265)?

• Thus, for h ≤ 1:

mref(h) =

∫ ∞

C
(1 + h)p̃(Cr) dCr (266)

= (1 + h)Prob(Cr ≥ C|p̃) = (1 + h)Prob

(
Cr − µ

σ
≥ C − µ

σ

∣∣∣∣ p̃
)

(267)

= (1 + h)

[
1− Φ

(
C − µ

σ

)]
≤ ε

(
because

Cr − µ

σ
∼ N (0, 1)

)
(268)

=⇒ ĥref(C, ε) =
ε

1− Φ
(
C−µ
σ

) − 1

for 1− Φ

(
C − µ

σ

)
≤ ε ≤ 2

[
1− Φ

(
C − µ

σ

)]
(269)

◦ Note that ĥref(C, ε) ≤ 1 for the ε-range indicated, so assumption that h ≤ 1 is satisfied.

◦ We have not derived ĥref for ε outside of this range.

§ Numerical example, fig. 27, p.53:

• Potential employee states his “value” as Ã = 1.2.

• Employer offers C = 1.

• Other parameters in figure.

• Increasing solid red curve in fig. 27: ĥref(C, ε).

• Decreasing solid blue curve in fig. 27: ĥpw(C, ε).

• Overall robustness, ĥ(C,PWc, ε) = min
[
ĥpw(C,PWc), ĥref(C, ε)

]
, from eq.(260).

• Recall that ĥ(C,PWc, ε) varies over the plane, ε vs PWc.

• Suppose ε = 0.5 and PWc = 1, then ĥ = ĥpw ≈ 0.03 (blue). Very low robustness.

§ Numerical example, fig. 28, p.53:

• Employer offers lower salary: C = 0.9. Other parameters the same.

• ĥpw(C, ε) increases: blue solid to green dash. Does this make sense? Why?

• ĥref(C, ε) decreases: red solid to turquoise dash. Does this make sense? Why?
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• Suppose ε = 0.5 and PWc = 1, then ĥ = ĥpw ≈ 0.12 (dash green). Better than before.

Why?

Robustness for refusal decreased, but robustness for PW is smaller, and increased more.
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ĥ

ε, PWc

Dash:
C = 0.9

Solid:
C = 1
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Figure 27: Sub-robustness
curves, eqs.(263) (blue) and
(269) (red). C = 1.0
(Transp.) i = 0.1.

Figure 28: Sub-robustness
curves, eqs.(263) (blue,
green) and (269) (red, cyan).
Solid: C = 1.0. Dash:
C = 0.9 (Transp.). i = 0.1.
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12 Opportuneness: The Other Side of Uncertainty

12.1 Opportuneness and Uncertain Constant Yearly Profit, A

§ Return to example in section 8, p.27:

• Future worth of constant profit, eq.(12), p.9:

◦ A = profit at end of each period.

◦ i = reinvest at profit rate i.

◦ N = number of periods.

◦ The future worth is:

FW =
(1 + i)N − 1

i︸ ︷︷ ︸
I

A (270)

• Uncertainty: the constant end-of-period profit, A, is uncertain.

◦ Ã = known estimated profit.

◦ A = unknown true profit.

◦ sA = error of estimate.

◦ Fractional-error info-gap model:

U(h) =
{
A :

∣∣∣∣∣
A− Ã

sA

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (271)

• Robustness:

ĥ(FWc) = max

{
h :

(
min

A∈U(h)
FW(A)

)
≥ FWc

}
(272)

=
1

sA

(
Ã− FWc

I

)
(273)

§ Opportuneness:

• FWw is a wonderful windfall value of FW :

FWw ≥ FW(Ã) ≥ FWc (274)

• Opportuneness:

◦ Uncertainty is good: The potential for better-than-expected outcome.

◦ Distinct from robustness for which uncertainty is bad.

◦ The investment is opportune if FWw is possible at low uncertainty.

◦ Investment 1 is more opportune than investment 2 if

FWw is possible at lower uncertainty with investment 1 than with investment 2.

• Definition of opportuneness function:

β̂(FWw) = min

{
h :

(
max

A∈U(h)
FW(A)

)
≥ FWw

}
(275)

• Compare with robustness, eq.(272): exchange of min and max operators.

• Meaning of opportuneness function: small β̂ is good; large β̂ is bad:

β̂ is immunity against windfall.

• Meaning of robustness function: small ĥ is bad; large ĥ is good:

ĥ is immunity against failure.
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§ Evaluating the opportuneness.

• Aspiration exceeds anticipation:

FWw > FW(Ã) (276)

Thus we need favorable surprise to enable FWw.

• Question: What is opportuneness for FWw ≤ FW(Ã)?

• M(h) is inner maximum in eq.(275): the inverse of β̂(FWw).

• M(h) occurs for A = Ã+ sAh:

M(h) = I(Ã+ sAh) ≥ FWw =⇒ β̂(FWw) =
1

sA

(
FWw

I
− Ã

)
(277)

• Zeroing: No uncertainty needed to enable the anticipated value: FWw = FW(Ã) (fig 29, p.55).

• Trade off: Opportuneness gets worse (β̂ bigger) as aspiration increases (FWw bigger).
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Figure 29: Robustness and opportuneness curves.

§ Immunity functions: sympathetic or antagonistic:

• Combine eqs.(273) and (277):

ĥ = −β̂ +
FWw − FWc

sAI
(278)

Note: 2nd term on right is non-negative: FWw ≥ FWc.

• Robustness and opportuneness are sympathetic wrt choice of Ã:

Any change in Ã that improves robustness also improves opportuneness:

∂ĥ

∂Ã
> 0 if and only if

∂β̂

∂Ã
< 0 (279)

Does this make sense? Why?

• Robustness and opportuneness are antagonistic wrt choice of sA:

Any change in sA that improves robustness worsens opportuneness:

∂ĥ

∂sA
< 0 if and only if

∂β̂

∂sA
< 0 (280)

Does this make sense? Why?

• Robustness and opportuneness are sympathetic wrt choice of x if and only if:

∂ĥ

∂x

∂β̂

∂x
< 0 (281)
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12.2 Robustness and Opportuneness: Sellers and Buyers

§ Buyers, sellers and diminishing marginal utility (Tal and Gal):18

• Ed has lots of oranges. He eats oranges all day. He would love an apple.

Ed’s marginal utility for oranges is low and for apples is high.

• Ned has lots of apples. He eats apples all day. He would love an orange.

Ned’s marginal utility for apples is low and for oranges is high.

• When Ed and Ned meet they rapidly make a deal to exchanges some apples and oranges.

§ This marginal utility explanation does not explain all transactions,

especially exchanges of monetary instruments: money for money.

§ Continue example in section 12.1, p.54.
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Figure 30: Robustness and opportuneness curves.

§ Ed wants to own an investment with confidence for moderate earnings.

• Ed’s critical FW is FWc,ed.

• The robustness, eq.(273), p.54, is (see fig. 30, p.56):

ĥ(FWc) =
1

sA

(
Ã− FWc

I

)
(282)

• The robustness—immunity against failure—for FWc,ed is low so Ed wants to sell. Fig. 30, p.56.

§ Ned wants to own an investment with potential for high earnings.

• Ned’s windfall FW is FWw,ned.

• The opportuneness function, eq.(277), p.55, is (see fig. 30, p.56):

β̂(FWw) =
1

sA

(
FWw

I
− Ã

)
(283)

• The opportuneness—immunity against windfall— for FWw,ned is low so Ed wants to buy.

Fig. 30, p.56.

§ Ed, meet Ned. Ned, meet Ed. Let’s make a deal!

18Marginal utility: toelet shulit.
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12.3 Robustness Indifference and Its Opportuneness Resolution

§ Continue example of section 12.2, p.56:

• A = profit at end of each period.

• i = reinvest at profit rate i.

• N = number of periods.

§ The robustness and opportuneness functions are:

ĥ(FWc) =
1

sA

(
Ã− FWc

I

)
(284)

β̂(FWw) =
1

sA

(
FWw

I
− Ã

)
(285)

§ Choice between two plans, Ã, sA and Ã
′
, s′A, where:

Ã < Ã
′
,

Ã

sA
>

Ã
′

s′A
(286)

• The left relation implies that the ‘prime’ option is purportedly better.

• The right relation implies that the ‘prime’ option is more uncertain.

• The robustness curves cross at FW× (see fig. 31, p.57):

Robust indifference between plans for FWc ≈ FW×.

• The opportuneness curves do not cross (see fig. 31):

Opportuneness preference for plan Ã
′
, s′A.

• Opportuneness can resolve a robust indifference.
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Figure 31: Robustness and opportuneness curves for the two options in eq.(286).


